| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsumsers.1 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 𝐹 ‘ 𝑘 )  =  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  0 ) ) | 
						
							| 2 |  | fsumsers.2 | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 3 |  | fsumsers.3 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℂ ) | 
						
							| 4 |  | fsumsers.4 | ⊢ ( 𝜑  →  𝐴  ⊆  ( 𝑀 ... 𝑁 ) ) | 
						
							| 5 |  | eqid | ⊢ ( ℤ≥ ‘ 𝑀 )  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 6 |  | eluzel2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑀  ∈  ℤ ) | 
						
							| 7 | 2 6 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 8 |  | fzssuz | ⊢ ( 𝑀 ... 𝑁 )  ⊆  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 9 | 4 8 | sstrdi | ⊢ ( 𝜑  →  𝐴  ⊆  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 10 | 5 7 9 1 3 | zsum | ⊢ ( 𝜑  →  Σ 𝑘  ∈  𝐴 𝐵  =  (  ⇝  ‘ seq 𝑀 (  +  ,  𝐹 ) ) ) | 
						
							| 11 |  | fclim | ⊢  ⇝  : dom   ⇝  ⟶ ℂ | 
						
							| 12 |  | ffun | ⊢ (  ⇝  : dom   ⇝  ⟶ ℂ  →  Fun   ⇝  ) | 
						
							| 13 | 11 12 | ax-mp | ⊢ Fun   ⇝ | 
						
							| 14 | 1 2 3 4 | fsumcvg2 | ⊢ ( 𝜑  →  seq 𝑀 (  +  ,  𝐹 )  ⇝  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑁 ) ) | 
						
							| 15 |  | funbrfv | ⊢ ( Fun   ⇝   →  ( seq 𝑀 (  +  ,  𝐹 )  ⇝  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑁 )  →  (  ⇝  ‘ seq 𝑀 (  +  ,  𝐹 ) )  =  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑁 ) ) ) | 
						
							| 16 | 13 14 15 | mpsyl | ⊢ ( 𝜑  →  (  ⇝  ‘ seq 𝑀 (  +  ,  𝐹 ) )  =  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑁 ) ) | 
						
							| 17 | 10 16 | eqtrd | ⊢ ( 𝜑  →  Σ 𝑘  ∈  𝐴 𝐵  =  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑁 ) ) |