Metamath Proof Explorer
Description: Value of a function given by the maps-to notation. (Contributed by Glauco Siliprandi, 15-Feb-2025)
|
|
Ref |
Expression |
|
Hypotheses |
fvmpt4d.1 |
⊢ Ⅎ 𝑥 𝐴 |
|
|
fvmpt4d.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝐶 ) |
|
|
fvmpt4d.3 |
⊢ ( 𝜑 → 𝑥 ∈ 𝐴 ) |
|
Assertion |
fvmpt4d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvmpt4d.1 |
⊢ Ⅎ 𝑥 𝐴 |
| 2 |
|
fvmpt4d.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝐶 ) |
| 3 |
|
fvmpt4d.3 |
⊢ ( 𝜑 → 𝑥 ∈ 𝐴 ) |
| 4 |
1
|
fvmpt2f |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 5 |
3 2 4
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |