Metamath Proof Explorer


Theorem fvmpt4d

Description: Value of a function given by the maps-to notation. (Contributed by Glauco Siliprandi, 15-Feb-2025)

Ref Expression
Hypotheses fvmpt4d.1 𝑥 𝐴
fvmpt4d.2 ( 𝜑𝐵𝐶 )
fvmpt4d.3 ( 𝜑𝑥𝐴 )
Assertion fvmpt4d ( 𝜑 → ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 fvmpt4d.1 𝑥 𝐴
2 fvmpt4d.2 ( 𝜑𝐵𝐶 )
3 fvmpt4d.3 ( 𝜑𝑥𝐴 )
4 1 fvmpt2f ( ( 𝑥𝐴𝐵𝐶 ) → ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) = 𝐵 )
5 3 2 4 syl2anc ( 𝜑 → ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) = 𝐵 )