Step |
Hyp |
Ref |
Expression |
1 |
|
2cn |
⊢ 2 ∈ ℂ |
2 |
1
|
addid2i |
⊢ ( 0 + 2 ) = 2 |
3 |
2
|
eqcomi |
⊢ 2 = ( 0 + 2 ) |
4 |
3
|
oveq2i |
⊢ ( 0 ... 2 ) = ( 0 ... ( 0 + 2 ) ) |
5 |
|
0z |
⊢ 0 ∈ ℤ |
6 |
|
fztp |
⊢ ( 0 ∈ ℤ → ( 0 ... ( 0 + 2 ) ) = { 0 , ( 0 + 1 ) , ( 0 + 2 ) } ) |
7 |
5 6
|
ax-mp |
⊢ ( 0 ... ( 0 + 2 ) ) = { 0 , ( 0 + 1 ) , ( 0 + 2 ) } |
8 |
|
eqid |
⊢ 0 = 0 |
9 |
|
id |
⊢ ( 0 = 0 → 0 = 0 ) |
10 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
11 |
10
|
a1i |
⊢ ( 0 = 0 → ( 0 + 1 ) = 1 ) |
12 |
2
|
a1i |
⊢ ( 0 = 0 → ( 0 + 2 ) = 2 ) |
13 |
9 11 12
|
tpeq123d |
⊢ ( 0 = 0 → { 0 , ( 0 + 1 ) , ( 0 + 2 ) } = { 0 , 1 , 2 } ) |
14 |
8 13
|
ax-mp |
⊢ { 0 , ( 0 + 1 ) , ( 0 + 2 ) } = { 0 , 1 , 2 } |
15 |
4 7 14
|
3eqtri |
⊢ ( 0 ... 2 ) = { 0 , 1 , 2 } |