| Step |
Hyp |
Ref |
Expression |
| 1 |
|
graop.h |
⊢ 𝐻 = 〈 ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) 〉 |
| 2 |
1
|
fveq2i |
⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 〈 ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) 〉 ) |
| 3 |
|
fvex |
⊢ ( Vtx ‘ 𝐺 ) ∈ V |
| 4 |
|
fvex |
⊢ ( iEdg ‘ 𝐺 ) ∈ V |
| 5 |
3 4
|
opvtxfvi |
⊢ ( Vtx ‘ 〈 ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) 〉 ) = ( Vtx ‘ 𝐺 ) |
| 6 |
2 5
|
eqtr2i |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐻 ) |
| 7 |
1
|
fveq2i |
⊢ ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 〈 ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) 〉 ) |
| 8 |
3 4
|
opiedgfvi |
⊢ ( iEdg ‘ 〈 ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) 〉 ) = ( iEdg ‘ 𝐺 ) |
| 9 |
7 8
|
eqtr2i |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐻 ) |
| 10 |
6 9
|
pm3.2i |
⊢ ( ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐻 ) ∧ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐻 ) ) |