Step |
Hyp |
Ref |
Expression |
1 |
|
grpstrx.b |
⊢ 𝐵 ∈ V |
2 |
|
grpstrx.p |
⊢ + ∈ V |
3 |
|
grpstrx.g |
⊢ 𝐺 = { ⟨ 1 , 𝐵 ⟩ , ⟨ 2 , + ⟩ } |
4 |
|
basendx |
⊢ ( Base ‘ ndx ) = 1 |
5 |
4
|
opeq1i |
⊢ ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ = ⟨ 1 , 𝐵 ⟩ |
6 |
|
plusgndx |
⊢ ( +g ‘ ndx ) = 2 |
7 |
6
|
opeq1i |
⊢ ⟨ ( +g ‘ ndx ) , + ⟩ = ⟨ 2 , + ⟩ |
8 |
5 7
|
preq12i |
⊢ { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ } = { ⟨ 1 , 𝐵 ⟩ , ⟨ 2 , + ⟩ } |
9 |
3 8
|
eqtr4i |
⊢ 𝐺 = { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ } |
10 |
9
|
grpbase |
⊢ ( 𝐵 ∈ V → 𝐵 = ( Base ‘ 𝐺 ) ) |
11 |
1 10
|
ax-mp |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |