| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpinvinv.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
grpinvinv.n |
⊢ 𝑁 = ( invg ‘ 𝐺 ) |
| 3 |
|
grpinv11.g |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 4 |
|
grpinv11.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 5 |
|
grpinv11.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 6 |
|
fveq2 |
⊢ ( ( 𝑁 ‘ 𝑋 ) = ( 𝑁 ‘ 𝑌 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) = ( 𝑁 ‘ ( 𝑁 ‘ 𝑌 ) ) ) |
| 7 |
1 2
|
grpinvinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) = 𝑋 ) |
| 8 |
3 4 7
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) = 𝑋 ) |
| 9 |
1 2
|
grpinvinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝑁 ‘ 𝑌 ) ) = 𝑌 ) |
| 10 |
3 5 9
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝑁 ‘ 𝑌 ) ) = 𝑌 ) |
| 11 |
8 10
|
eqeq12d |
⊢ ( 𝜑 → ( ( 𝑁 ‘ ( 𝑁 ‘ 𝑋 ) ) = ( 𝑁 ‘ ( 𝑁 ‘ 𝑌 ) ) ↔ 𝑋 = 𝑌 ) ) |
| 12 |
6 11
|
imbitrid |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑋 ) = ( 𝑁 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) |
| 13 |
|
fveq2 |
⊢ ( 𝑋 = 𝑌 → ( 𝑁 ‘ 𝑋 ) = ( 𝑁 ‘ 𝑌 ) ) |
| 14 |
12 13
|
impbid1 |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑋 ) = ( 𝑁 ‘ 𝑌 ) ↔ 𝑋 = 𝑌 ) ) |