Metamath Proof Explorer


Theorem gsumcl2

Description: Closure of a finite group sum. This theorem has a weaker hypothesis than gsumcl , because it is not required that F is a function (actually, the hypothesis always holds for any proper class F ). (Contributed by Mario Carneiro, 15-Dec-2014) (Revised by Mario Carneiro, 24-Apr-2016) (Revised by AV, 3-Jun-2019)

Ref Expression
Hypotheses gsumcl.b 𝐵 = ( Base ‘ 𝐺 )
gsumcl.z 0 = ( 0g𝐺 )
gsumcl.g ( 𝜑𝐺 ∈ CMnd )
gsumcl.a ( 𝜑𝐴𝑉 )
gsumcl.f ( 𝜑𝐹 : 𝐴𝐵 )
gsumcl2.w ( 𝜑 → ( 𝐹 supp 0 ) ∈ Fin )
Assertion gsumcl2 ( 𝜑 → ( 𝐺 Σg 𝐹 ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 gsumcl.b 𝐵 = ( Base ‘ 𝐺 )
2 gsumcl.z 0 = ( 0g𝐺 )
3 gsumcl.g ( 𝜑𝐺 ∈ CMnd )
4 gsumcl.a ( 𝜑𝐴𝑉 )
5 gsumcl.f ( 𝜑𝐹 : 𝐴𝐵 )
6 gsumcl2.w ( 𝜑 → ( 𝐹 supp 0 ) ∈ Fin )
7 eqid ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 )
8 cmnmnd ( 𝐺 ∈ CMnd → 𝐺 ∈ Mnd )
9 3 8 syl ( 𝜑𝐺 ∈ Mnd )
10 1 7 3 5 cntzcmnf ( 𝜑 → ran 𝐹 ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ran 𝐹 ) )
11 1 2 7 9 4 5 10 6 gsumzcl2 ( 𝜑 → ( 𝐺 Σg 𝐹 ) ∈ 𝐵 )