Metamath Proof Explorer
		
		
		
		Description:  Relationship between <_ and >_ using hypotheses.  (Contributed by David A. Wheeler, 10-May-2015)  (New usage is discouraged.)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | gte-lteh.1 | ⊢ 𝐴  ∈  V | 
					
						|  |  | gte-lteh.2 | ⊢ 𝐵  ∈  V | 
				
					|  | Assertion | gte-lteh | ⊢  ( 𝐴  ≥  𝐵  ↔  𝐵  ≤  𝐴 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gte-lteh.1 | ⊢ 𝐴  ∈  V | 
						
							| 2 |  | gte-lteh.2 | ⊢ 𝐵  ∈  V | 
						
							| 3 |  | df-gte | ⊢  ≥   =  ◡  ≤ | 
						
							| 4 | 3 | breqi | ⊢ ( 𝐴  ≥  𝐵  ↔  𝐴 ◡  ≤  𝐵 ) | 
						
							| 5 | 1 2 | brcnv | ⊢ ( 𝐴 ◡  ≤  𝐵  ↔  𝐵  ≤  𝐴 ) | 
						
							| 6 | 4 5 | bitri | ⊢ ( 𝐴  ≥  𝐵  ↔  𝐵  ≤  𝐴 ) |