Metamath Proof Explorer


Theorem hhssba

Description: The base set of a subspace. (Contributed by NM, 10-Apr-2008) (New usage is discouraged.)

Ref Expression
Hypotheses hhsssh2.1 𝑊 = ⟨ ⟨ ( + ↾ ( 𝐻 × 𝐻 ) ) , ( · ↾ ( ℂ × 𝐻 ) ) ⟩ , ( norm𝐻 ) ⟩
hhssba.2 𝐻S
Assertion hhssba 𝐻 = ( BaseSet ‘ 𝑊 )

Proof

Step Hyp Ref Expression
1 hhsssh2.1 𝑊 = ⟨ ⟨ ( + ↾ ( 𝐻 × 𝐻 ) ) , ( · ↾ ( ℂ × 𝐻 ) ) ⟩ , ( norm𝐻 ) ⟩
2 hhssba.2 𝐻S
3 eqid ⟨ ⟨ + , · ⟩ , norm ⟩ = ⟨ ⟨ + , · ⟩ , norm
4 3 1 hhsst ( 𝐻S𝑊 ∈ ( SubSp ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ ) )
5 2 4 ax-mp 𝑊 ∈ ( SubSp ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ )
6 2 shssii 𝐻 ⊆ ℋ
7 3 1 5 6 hhshsslem1 𝐻 = ( BaseSet ‘ 𝑊 )