| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cjcl |
⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) ∈ ℂ ) |
| 2 |
|
his5 |
⊢ ( ( ( ∗ ‘ 𝐴 ) ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 ·ih ( ( ∗ ‘ 𝐴 ) ·ℎ 𝐶 ) ) = ( ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) · ( 𝐵 ·ih 𝐶 ) ) ) |
| 3 |
1 2
|
syl3an1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 ·ih ( ( ∗ ‘ 𝐴 ) ·ℎ 𝐶 ) ) = ( ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) · ( 𝐵 ·ih 𝐶 ) ) ) |
| 4 |
|
cjcj |
⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) = 𝐴 ) |
| 5 |
4
|
oveq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) · ( 𝐵 ·ih 𝐶 ) ) = ( 𝐴 · ( 𝐵 ·ih 𝐶 ) ) ) |
| 6 |
5
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) · ( 𝐵 ·ih 𝐶 ) ) = ( 𝐴 · ( 𝐵 ·ih 𝐶 ) ) ) |
| 7 |
3 6
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 ·ih ( ( ∗ ‘ 𝐴 ) ·ℎ 𝐶 ) ) = ( 𝐴 · ( 𝐵 ·ih 𝐶 ) ) ) |