Metamath Proof Explorer


Theorem hmeocldb

Description: Homeomorphisms preserve closedness. (Contributed by Jeff Hankins, 3-Jul-2009)

Ref Expression
Assertion hmeocldb ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐾 ) ) → ( 𝐹𝑆 ) ∈ ( Clsd ‘ 𝐽 ) )

Proof

Step Hyp Ref Expression
1 hmeocn ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) )
2 1 3ad2ant3 ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) )
3 cnclima ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐾 ) ) → ( 𝐹𝑆 ) ∈ ( Clsd ‘ 𝐽 ) )
4 2 3 sylan ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ) ∧ 𝑆 ∈ ( Clsd ‘ 𝐾 ) ) → ( 𝐹𝑆 ) ∈ ( Clsd ‘ 𝐽 ) )