| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hmop |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) ) |
| 2 |
1
|
3anidm23 |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ) → ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) ) |
| 3 |
2
|
eqcomd |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ) → ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) = ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ) |
| 4 |
|
hmopf |
⊢ ( 𝑇 ∈ HrmOp → 𝑇 : ℋ ⟶ ℋ ) |
| 5 |
4
|
ffvelcdmda |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ) → ( 𝑇 ‘ 𝐴 ) ∈ ℋ ) |
| 6 |
|
hire |
⊢ ( ( ( 𝑇 ‘ 𝐴 ) ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) ∈ ℝ ↔ ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) = ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ) ) |
| 7 |
5 6
|
sylancom |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ) → ( ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) ∈ ℝ ↔ ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) = ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ) ) |
| 8 |
3 7
|
mpbird |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ) → ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) ∈ ℝ ) |