Metamath Proof Explorer


Theorem hvmulcl

Description: Closure of scalar multiplication. (Contributed by NM, 19-Apr-2007) (New usage is discouraged.)

Ref Expression
Assertion hvmulcl ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 · 𝐵 ) ∈ ℋ )

Proof

Step Hyp Ref Expression
1 ax-hfvmul · : ( ℂ × ℋ ) ⟶ ℋ
2 1 fovcl ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 · 𝐵 ) ∈ ℋ )