Metamath Proof Explorer
		
		
		
		Description:  Value of the closed-below, open-above interval function.  (Contributed by NM, 24-Dec-2006)  (Revised by Mario Carneiro, 3-Nov-2013)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | icoval | ⊢  ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( 𝐴 [,) 𝐵 )  =  { 𝑥  ∈  ℝ*  ∣  ( 𝐴  ≤  𝑥  ∧  𝑥  <  𝐵 ) } ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-ico | ⊢ [,)  =  ( 𝑦  ∈  ℝ* ,  𝑧  ∈  ℝ*  ↦  { 𝑥  ∈  ℝ*  ∣  ( 𝑦  ≤  𝑥  ∧  𝑥  <  𝑧 ) } ) | 
						
							| 2 | 1 | ixxval | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( 𝐴 [,) 𝐵 )  =  { 𝑥  ∈  ℝ*  ∣  ( 𝐴  ≤  𝑥  ∧  𝑥  <  𝐵 ) } ) |