Metamath Proof Explorer


Theorem ifbi

Description: Equivalence theorem for conditional operators. (Contributed by Raph Levien, 15-Jan-2004)

Ref Expression
Assertion ifbi ( ( 𝜑𝜓 ) → if ( 𝜑 , 𝐴 , 𝐵 ) = if ( 𝜓 , 𝐴 , 𝐵 ) )

Proof

Step Hyp Ref Expression
1 dfbi3 ( ( 𝜑𝜓 ) ↔ ( ( 𝜑𝜓 ) ∨ ( ¬ 𝜑 ∧ ¬ 𝜓 ) ) )
2 iftrue ( 𝜑 → if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐴 )
3 iftrue ( 𝜓 → if ( 𝜓 , 𝐴 , 𝐵 ) = 𝐴 )
4 3 eqcomd ( 𝜓𝐴 = if ( 𝜓 , 𝐴 , 𝐵 ) )
5 2 4 sylan9eq ( ( 𝜑𝜓 ) → if ( 𝜑 , 𝐴 , 𝐵 ) = if ( 𝜓 , 𝐴 , 𝐵 ) )
6 iffalse ( ¬ 𝜑 → if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐵 )
7 iffalse ( ¬ 𝜓 → if ( 𝜓 , 𝐴 , 𝐵 ) = 𝐵 )
8 7 eqcomd ( ¬ 𝜓𝐵 = if ( 𝜓 , 𝐴 , 𝐵 ) )
9 6 8 sylan9eq ( ( ¬ 𝜑 ∧ ¬ 𝜓 ) → if ( 𝜑 , 𝐴 , 𝐵 ) = if ( 𝜓 , 𝐴 , 𝐵 ) )
10 5 9 jaoi ( ( ( 𝜑𝜓 ) ∨ ( ¬ 𝜑 ∧ ¬ 𝜓 ) ) → if ( 𝜑 , 𝐴 , 𝐵 ) = if ( 𝜓 , 𝐴 , 𝐵 ) )
11 1 10 sylbi ( ( 𝜑𝜓 ) → if ( 𝜑 , 𝐴 , 𝐵 ) = if ( 𝜓 , 𝐴 , 𝐵 ) )