| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iihalf2cnOLD.1 | ⊢ 𝐽  =  ( ( topGen ‘ ran  (,) )  ↾t  ( ( 1  /  2 ) [,] 1 ) ) | 
						
							| 2 |  | eqid | ⊢ ( TopOpen ‘ ℂfld )  =  ( TopOpen ‘ ℂfld ) | 
						
							| 3 |  | dfii2 | ⊢ II  =  ( ( topGen ‘ ran  (,) )  ↾t  ( 0 [,] 1 ) ) | 
						
							| 4 |  | halfre | ⊢ ( 1  /  2 )  ∈  ℝ | 
						
							| 5 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 6 |  | iccssre | ⊢ ( ( ( 1  /  2 )  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( ( 1  /  2 ) [,] 1 )  ⊆  ℝ ) | 
						
							| 7 | 4 5 6 | mp2an | ⊢ ( ( 1  /  2 ) [,] 1 )  ⊆  ℝ | 
						
							| 8 | 7 | a1i | ⊢ ( ⊤  →  ( ( 1  /  2 ) [,] 1 )  ⊆  ℝ ) | 
						
							| 9 |  | unitssre | ⊢ ( 0 [,] 1 )  ⊆  ℝ | 
						
							| 10 | 9 | a1i | ⊢ ( ⊤  →  ( 0 [,] 1 )  ⊆  ℝ ) | 
						
							| 11 |  | iihalf2 | ⊢ ( 𝑥  ∈  ( ( 1  /  2 ) [,] 1 )  →  ( ( 2  ·  𝑥 )  −  1 )  ∈  ( 0 [,] 1 ) ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( ( 1  /  2 ) [,] 1 ) )  →  ( ( 2  ·  𝑥 )  −  1 )  ∈  ( 0 [,] 1 ) ) | 
						
							| 13 | 2 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ ) | 
						
							| 14 | 13 | a1i | ⊢ ( ⊤  →  ( TopOpen ‘ ℂfld )  ∈  ( TopOn ‘ ℂ ) ) | 
						
							| 15 |  | 2cnd | ⊢ ( ⊤  →  2  ∈  ℂ ) | 
						
							| 16 | 14 14 15 | cnmptc | ⊢ ( ⊤  →  ( 𝑥  ∈  ℂ  ↦  2 )  ∈  ( ( TopOpen ‘ ℂfld )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 17 | 14 | cnmptid | ⊢ ( ⊤  →  ( 𝑥  ∈  ℂ  ↦  𝑥 )  ∈  ( ( TopOpen ‘ ℂfld )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 18 | 2 | mulcn | ⊢  ·   ∈  ( ( ( TopOpen ‘ ℂfld )  ×t  ( TopOpen ‘ ℂfld ) )  Cn  ( TopOpen ‘ ℂfld ) ) | 
						
							| 19 | 18 | a1i | ⊢ ( ⊤  →   ·   ∈  ( ( ( TopOpen ‘ ℂfld )  ×t  ( TopOpen ‘ ℂfld ) )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 20 | 14 16 17 19 | cnmpt12f | ⊢ ( ⊤  →  ( 𝑥  ∈  ℂ  ↦  ( 2  ·  𝑥 ) )  ∈  ( ( TopOpen ‘ ℂfld )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 21 |  | 1cnd | ⊢ ( ⊤  →  1  ∈  ℂ ) | 
						
							| 22 | 14 14 21 | cnmptc | ⊢ ( ⊤  →  ( 𝑥  ∈  ℂ  ↦  1 )  ∈  ( ( TopOpen ‘ ℂfld )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 23 | 2 | subcn | ⊢  −   ∈  ( ( ( TopOpen ‘ ℂfld )  ×t  ( TopOpen ‘ ℂfld ) )  Cn  ( TopOpen ‘ ℂfld ) ) | 
						
							| 24 | 23 | a1i | ⊢ ( ⊤  →   −   ∈  ( ( ( TopOpen ‘ ℂfld )  ×t  ( TopOpen ‘ ℂfld ) )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 25 | 14 20 22 24 | cnmpt12f | ⊢ ( ⊤  →  ( 𝑥  ∈  ℂ  ↦  ( ( 2  ·  𝑥 )  −  1 ) )  ∈  ( ( TopOpen ‘ ℂfld )  Cn  ( TopOpen ‘ ℂfld ) ) ) | 
						
							| 26 | 2 1 3 8 10 12 25 | cnmptre | ⊢ ( ⊤  →  ( 𝑥  ∈  ( ( 1  /  2 ) [,] 1 )  ↦  ( ( 2  ·  𝑥 )  −  1 ) )  ∈  ( 𝐽  Cn  II ) ) | 
						
							| 27 | 26 | mptru | ⊢ ( 𝑥  ∈  ( ( 1  /  2 ) [,] 1 )  ↦  ( ( 2  ·  𝑥 )  −  1 ) )  ∈  ( 𝐽  Cn  II ) |