Description: Imaginary part of a complex conjugate. (Contributed by NM, 2-Oct-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | recl.1 | ⊢ 𝐴 ∈ ℂ | |
| Assertion | imcji | ⊢ ( ℑ ‘ ( ∗ ‘ 𝐴 ) ) = - ( ℑ ‘ 𝐴 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | recl.1 | ⊢ 𝐴 ∈ ℂ | |
| 2 | imcj | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ ( ∗ ‘ 𝐴 ) ) = - ( ℑ ‘ 𝐴 ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( ℑ ‘ ( ∗ ‘ 𝐴 ) ) = - ( ℑ ‘ 𝐴 ) |