Metamath Proof Explorer


Theorem inf2

Description: Variation of Axiom of Infinity. There exists a nonempty set that is a subset of its union (using zfinf as a hypothesis). Abbreviated version of the Axiom of Infinity in FreydScedrov p. 283. (Contributed by NM, 28-Oct-1996)

Ref Expression
Hypothesis inf1.1 𝑥 ( 𝑦𝑥 ∧ ∀ 𝑦 ( 𝑦𝑥 → ∃ 𝑧 ( 𝑦𝑧𝑧𝑥 ) ) )
Assertion inf2 𝑥 ( 𝑥 ≠ ∅ ∧ 𝑥 𝑥 )

Proof

Step Hyp Ref Expression
1 inf1.1 𝑥 ( 𝑦𝑥 ∧ ∀ 𝑦 ( 𝑦𝑥 → ∃ 𝑧 ( 𝑦𝑧𝑧𝑥 ) ) )
2 1 inf1 𝑥 ( 𝑥 ≠ ∅ ∧ ∀ 𝑦 ( 𝑦𝑥 → ∃ 𝑧 ( 𝑦𝑧𝑧𝑥 ) ) )
3 dfss2 ( 𝑥 𝑥 ↔ ∀ 𝑦 ( 𝑦𝑥𝑦 𝑥 ) )
4 eluni ( 𝑦 𝑥 ↔ ∃ 𝑧 ( 𝑦𝑧𝑧𝑥 ) )
5 4 imbi2i ( ( 𝑦𝑥𝑦 𝑥 ) ↔ ( 𝑦𝑥 → ∃ 𝑧 ( 𝑦𝑧𝑧𝑥 ) ) )
6 5 albii ( ∀ 𝑦 ( 𝑦𝑥𝑦 𝑥 ) ↔ ∀ 𝑦 ( 𝑦𝑥 → ∃ 𝑧 ( 𝑦𝑧𝑧𝑥 ) ) )
7 3 6 bitri ( 𝑥 𝑥 ↔ ∀ 𝑦 ( 𝑦𝑥 → ∃ 𝑧 ( 𝑦𝑧𝑧𝑥 ) ) )
8 7 anbi2i ( ( 𝑥 ≠ ∅ ∧ 𝑥 𝑥 ) ↔ ( 𝑥 ≠ ∅ ∧ ∀ 𝑦 ( 𝑦𝑥 → ∃ 𝑧 ( 𝑦𝑧𝑧𝑥 ) ) ) )
9 8 exbii ( ∃ 𝑥 ( 𝑥 ≠ ∅ ∧ 𝑥 𝑥 ) ↔ ∃ 𝑥 ( 𝑥 ≠ ∅ ∧ ∀ 𝑦 ( 𝑦𝑥 → ∃ 𝑧 ( 𝑦𝑧𝑧𝑥 ) ) ) )
10 2 9 mpbir 𝑥 ( 𝑥 ≠ ∅ ∧ 𝑥 𝑥 )