Step |
Hyp |
Ref |
Expression |
1 |
|
infxrlbrnmpt2.x |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
infxrlbrnmpt2.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ* ) |
3 |
|
infxrlbrnmpt2.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝐴 ) |
4 |
|
infxrlbrnmpt2.d |
⊢ ( 𝜑 → 𝐷 ∈ ℝ* ) |
5 |
|
infxrlbrnmpt2.e |
⊢ ( 𝑥 = 𝐶 → 𝐵 = 𝐷 ) |
6 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
7 |
1 6 2
|
rnmptssd |
⊢ ( 𝜑 → ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ* ) |
8 |
6 5
|
elrnmpt1s |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ ℝ* ) → 𝐷 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
9 |
3 4 8
|
syl2anc |
⊢ ( 𝜑 → 𝐷 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
10 |
|
infxrlb |
⊢ ( ( ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ* ∧ 𝐷 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) → inf ( ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) , ℝ* , < ) ≤ 𝐷 ) |
11 |
7 9 10
|
syl2anc |
⊢ ( 𝜑 → inf ( ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) , ℝ* , < ) ≤ 𝐷 ) |