Metamath Proof Explorer
Description: Second MultiplicationOne generator rule. (Contributed by Stanislas
Polu, 7-Apr-2020)
|
|
Ref |
Expression |
|
Hypotheses |
int-mul12d.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
|
|
int-mul12d.2 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
|
Assertion |
int-mul12d |
⊢ ( 𝜑 → ( 1 · 𝐴 ) = 𝐵 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
int-mul12d.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
int-mul12d.2 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
| 3 |
1
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 4 |
3
|
mullidd |
⊢ ( 𝜑 → ( 1 · 𝐴 ) = 𝐴 ) |
| 5 |
4 2
|
eqtrd |
⊢ ( 𝜑 → ( 1 · 𝐴 ) = 𝐵 ) |