Metamath Proof Explorer


Theorem int-mul12d

Description: Second MultiplicationOne generator rule. (Contributed by Stanislas Polu, 7-Apr-2020)

Ref Expression
Hypotheses int-mul12d.1 ( 𝜑𝐴 ∈ ℝ )
int-mul12d.2 ( 𝜑𝐴 = 𝐵 )
Assertion int-mul12d ( 𝜑 → ( 1 · 𝐴 ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 int-mul12d.1 ( 𝜑𝐴 ∈ ℝ )
2 int-mul12d.2 ( 𝜑𝐴 = 𝐵 )
3 1 recnd ( 𝜑𝐴 ∈ ℂ )
4 3 mulid2d ( 𝜑 → ( 1 · 𝐴 ) = 𝐴 )
5 4 2 eqtrd ( 𝜑 → ( 1 · 𝐴 ) = 𝐵 )