Description: Theorem joining a singleton to an intersection. (Contributed by NM, 29-Sep-2002)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | intunsn.1 | ⊢ 𝐵 ∈ V | |
| Assertion | intunsn | ⊢ ∩ ( 𝐴 ∪ { 𝐵 } ) = ( ∩ 𝐴 ∩ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intunsn.1 | ⊢ 𝐵 ∈ V | |
| 2 | intun | ⊢ ∩ ( 𝐴 ∪ { 𝐵 } ) = ( ∩ 𝐴 ∩ ∩ { 𝐵 } ) | |
| 3 | 1 | intsn | ⊢ ∩ { 𝐵 } = 𝐵 |
| 4 | 3 | ineq2i | ⊢ ( ∩ 𝐴 ∩ ∩ { 𝐵 } ) = ( ∩ 𝐴 ∩ 𝐵 ) |
| 5 | 2 4 | eqtri | ⊢ ∩ ( 𝐴 ∪ { 𝐵 } ) = ( ∩ 𝐴 ∩ 𝐵 ) |