| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0wlk.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
1fv |
⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝑃 = { 〈 0 , 𝑁 〉 } ) → ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) ) |
| 3 |
2
|
ancoms |
⊢ ( ( 𝑃 = { 〈 0 , 𝑁 〉 } ∧ 𝑁 ∈ 𝑉 ) → ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ ( 𝑃 ‘ 0 ) = 𝑁 ) ) |
| 4 |
3
|
simpld |
⊢ ( ( 𝑃 = { 〈 0 , 𝑁 〉 } ∧ 𝑁 ∈ 𝑉 ) → 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) |
| 5 |
1
|
1vgrex |
⊢ ( 𝑁 ∈ 𝑉 → 𝐺 ∈ V ) |
| 6 |
5
|
adantl |
⊢ ( ( 𝑃 = { 〈 0 , 𝑁 〉 } ∧ 𝑁 ∈ 𝑉 ) → 𝐺 ∈ V ) |
| 7 |
1
|
0wlk |
⊢ ( 𝐺 ∈ V → ( ∅ ( Walks ‘ 𝐺 ) 𝑃 ↔ 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) ) |
| 8 |
6 7
|
syl |
⊢ ( ( 𝑃 = { 〈 0 , 𝑁 〉 } ∧ 𝑁 ∈ 𝑉 ) → ( ∅ ( Walks ‘ 𝐺 ) 𝑃 ↔ 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) ) |
| 9 |
4 8
|
mpbird |
⊢ ( ( 𝑃 = { 〈 0 , 𝑁 〉 } ∧ 𝑁 ∈ 𝑉 ) → ∅ ( Walks ‘ 𝐺 ) 𝑃 ) |