| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							isdrng.b | 
							⊢ 𝐵  =  ( Base ‘ 𝑅 )  | 
						
						
							| 2 | 
							
								
							 | 
							isdrng.u | 
							⊢ 𝑈  =  ( Unit ‘ 𝑅 )  | 
						
						
							| 3 | 
							
								
							 | 
							isdrng.z | 
							⊢  0   =  ( 0g ‘ 𝑅 )  | 
						
						
							| 4 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑟  =  𝑅  →  ( Unit ‘ 𝑟 )  =  ( Unit ‘ 𝑅 ) )  | 
						
						
							| 5 | 
							
								4 2
							 | 
							eqtr4di | 
							⊢ ( 𝑟  =  𝑅  →  ( Unit ‘ 𝑟 )  =  𝑈 )  | 
						
						
							| 6 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑟  =  𝑅  →  ( Base ‘ 𝑟 )  =  ( Base ‘ 𝑅 ) )  | 
						
						
							| 7 | 
							
								6 1
							 | 
							eqtr4di | 
							⊢ ( 𝑟  =  𝑅  →  ( Base ‘ 𝑟 )  =  𝐵 )  | 
						
						
							| 8 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑟  =  𝑅  →  ( 0g ‘ 𝑟 )  =  ( 0g ‘ 𝑅 ) )  | 
						
						
							| 9 | 
							
								8 3
							 | 
							eqtr4di | 
							⊢ ( 𝑟  =  𝑅  →  ( 0g ‘ 𝑟 )  =   0  )  | 
						
						
							| 10 | 
							
								9
							 | 
							sneqd | 
							⊢ ( 𝑟  =  𝑅  →  { ( 0g ‘ 𝑟 ) }  =  {  0  } )  | 
						
						
							| 11 | 
							
								7 10
							 | 
							difeq12d | 
							⊢ ( 𝑟  =  𝑅  →  ( ( Base ‘ 𝑟 )  ∖  { ( 0g ‘ 𝑟 ) } )  =  ( 𝐵  ∖  {  0  } ) )  | 
						
						
							| 12 | 
							
								5 11
							 | 
							eqeq12d | 
							⊢ ( 𝑟  =  𝑅  →  ( ( Unit ‘ 𝑟 )  =  ( ( Base ‘ 𝑟 )  ∖  { ( 0g ‘ 𝑟 ) } )  ↔  𝑈  =  ( 𝐵  ∖  {  0  } ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							df-drng | 
							⊢ DivRing  =  { 𝑟  ∈  Ring  ∣  ( Unit ‘ 𝑟 )  =  ( ( Base ‘ 𝑟 )  ∖  { ( 0g ‘ 𝑟 ) } ) }  | 
						
						
							| 14 | 
							
								12 13
							 | 
							elrab2 | 
							⊢ ( 𝑅  ∈  DivRing  ↔  ( 𝑅  ∈  Ring  ∧  𝑈  =  ( 𝐵  ∖  {  0  } ) ) )  |