Step |
Hyp |
Ref |
Expression |
1 |
|
lpival.p |
⊢ 𝑃 = ( LPIdeal ‘ 𝑅 ) |
2 |
|
lpiss.u |
⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) |
3 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( LIdeal ‘ 𝑟 ) = ( LIdeal ‘ 𝑅 ) ) |
4 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( LPIdeal ‘ 𝑟 ) = ( LPIdeal ‘ 𝑅 ) ) |
5 |
3 4
|
eqeq12d |
⊢ ( 𝑟 = 𝑅 → ( ( LIdeal ‘ 𝑟 ) = ( LPIdeal ‘ 𝑟 ) ↔ ( LIdeal ‘ 𝑅 ) = ( LPIdeal ‘ 𝑅 ) ) ) |
6 |
2 1
|
eqeq12i |
⊢ ( 𝑈 = 𝑃 ↔ ( LIdeal ‘ 𝑅 ) = ( LPIdeal ‘ 𝑅 ) ) |
7 |
5 6
|
bitr4di |
⊢ ( 𝑟 = 𝑅 → ( ( LIdeal ‘ 𝑟 ) = ( LPIdeal ‘ 𝑟 ) ↔ 𝑈 = 𝑃 ) ) |
8 |
|
df-lpir |
⊢ LPIR = { 𝑟 ∈ Ring ∣ ( LIdeal ‘ 𝑟 ) = ( LPIdeal ‘ 𝑟 ) } |
9 |
7 8
|
elrab2 |
⊢ ( 𝑅 ∈ LPIR ↔ ( 𝑅 ∈ Ring ∧ 𝑈 = 𝑃 ) ) |