Step |
Hyp |
Ref |
Expression |
1 |
|
isms.j |
β’ π½ = ( TopOpen β πΎ ) |
2 |
|
isms.x |
β’ π = ( Base β πΎ ) |
3 |
|
isms.d |
β’ π· = ( ( dist β πΎ ) βΎ ( π Γ π ) ) |
4 |
|
fveq2 |
β’ ( π = πΎ β ( dist β π ) = ( dist β πΎ ) ) |
5 |
|
fveq2 |
β’ ( π = πΎ β ( Base β π ) = ( Base β πΎ ) ) |
6 |
5 2
|
eqtr4di |
β’ ( π = πΎ β ( Base β π ) = π ) |
7 |
6
|
sqxpeqd |
β’ ( π = πΎ β ( ( Base β π ) Γ ( Base β π ) ) = ( π Γ π ) ) |
8 |
4 7
|
reseq12d |
β’ ( π = πΎ β ( ( dist β π ) βΎ ( ( Base β π ) Γ ( Base β π ) ) ) = ( ( dist β πΎ ) βΎ ( π Γ π ) ) ) |
9 |
8 3
|
eqtr4di |
β’ ( π = πΎ β ( ( dist β π ) βΎ ( ( Base β π ) Γ ( Base β π ) ) ) = π· ) |
10 |
6
|
fveq2d |
β’ ( π = πΎ β ( Met β ( Base β π ) ) = ( Met β π ) ) |
11 |
9 10
|
eleq12d |
β’ ( π = πΎ β ( ( ( dist β π ) βΎ ( ( Base β π ) Γ ( Base β π ) ) ) β ( Met β ( Base β π ) ) β π· β ( Met β π ) ) ) |
12 |
|
df-ms |
β’ MetSp = { π β βMetSp β£ ( ( dist β π ) βΎ ( ( Base β π ) Γ ( Base β π ) ) ) β ( Met β ( Base β π ) ) } |
13 |
11 12
|
elrab2 |
β’ ( πΎ β MetSp β ( πΎ β βMetSp β§ π· β ( Met β π ) ) ) |