Description: A way to say " A is a set" (inference form). (Contributed by NM, 24-Jun-1993) Remove dependencies on axioms. (Revised by BJ, 13-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | isseti.1 | ⊢ 𝐴 ∈ V | |
| Assertion | isseti | ⊢ ∃ 𝑥 𝑥 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isseti.1 | ⊢ 𝐴 ∈ V | |
| 2 | elissetv | ⊢ ( 𝐴 ∈ V → ∃ 𝑥 𝑥 = 𝐴 ) | |
| 3 | 1 2 | ax-mp | ⊢ ∃ 𝑥 𝑥 = 𝐴 |