Description: A topological vector space is a topological module over a topological division ring. (Contributed by Mario Carneiro, 5-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tlmtrg.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| Assertion | istvc | ⊢ ( 𝑊 ∈ TopVec ↔ ( 𝑊 ∈ TopMod ∧ 𝐹 ∈ TopDRing ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tlmtrg.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | fveq2 | ⊢ ( 𝑥 = 𝑊 → ( Scalar ‘ 𝑥 ) = ( Scalar ‘ 𝑊 ) ) | |
| 3 | 2 1 | eqtr4di | ⊢ ( 𝑥 = 𝑊 → ( Scalar ‘ 𝑥 ) = 𝐹 ) |
| 4 | 3 | eleq1d | ⊢ ( 𝑥 = 𝑊 → ( ( Scalar ‘ 𝑥 ) ∈ TopDRing ↔ 𝐹 ∈ TopDRing ) ) |
| 5 | df-tvc | ⊢ TopVec = { 𝑥 ∈ TopMod ∣ ( Scalar ‘ 𝑥 ) ∈ TopDRing } | |
| 6 | 4 5 | elrab2 | ⊢ ( 𝑊 ∈ TopVec ↔ ( 𝑊 ∈ TopMod ∧ 𝐹 ∈ TopDRing ) ) |