Metamath Proof Explorer


Theorem ixpeq1d

Description: Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016)

Ref Expression
Hypothesis ixpeq1d.1 ( 𝜑𝐴 = 𝐵 )
Assertion ixpeq1d ( 𝜑X 𝑥𝐴 𝐶 = X 𝑥𝐵 𝐶 )

Proof

Step Hyp Ref Expression
1 ixpeq1d.1 ( 𝜑𝐴 = 𝐵 )
2 ixpeq1 ( 𝐴 = 𝐵X 𝑥𝐴 𝐶 = X 𝑥𝐵 𝐶 )
3 1 2 syl ( 𝜑X 𝑥𝐴 𝐶 = X 𝑥𝐵 𝐶 )