Metamath Proof Explorer


Theorem ixpint

Description: The intersection of a collection of infinite Cartesian products. (Contributed by Mario Carneiro, 3-Feb-2015)

Ref Expression
Assertion ixpint ( 𝐵 ≠ ∅ → X 𝑥𝐴 𝐵 = 𝑦𝐵 X 𝑥𝐴 𝑦 )

Proof

Step Hyp Ref Expression
1 ixpeq2 ( ∀ 𝑥𝐴 𝐵 = 𝑦𝐵 𝑦X 𝑥𝐴 𝐵 = X 𝑥𝐴 𝑦𝐵 𝑦 )
2 intiin 𝐵 = 𝑦𝐵 𝑦
3 2 a1i ( 𝑥𝐴 𝐵 = 𝑦𝐵 𝑦 )
4 1 3 mprg X 𝑥𝐴 𝐵 = X 𝑥𝐴 𝑦𝐵 𝑦
5 ixpiin ( 𝐵 ≠ ∅ → X 𝑥𝐴 𝑦𝐵 𝑦 = 𝑦𝐵 X 𝑥𝐴 𝑦 )
6 4 5 eqtrid ( 𝐵 ≠ ∅ → X 𝑥𝐴 𝐵 = 𝑦𝐵 X 𝑥𝐴 𝑦 )