Metamath Proof Explorer


Theorem latnlej2l

Description: An idiom to express that a lattice element differs from two others. (Contributed by NM, 19-Jul-2012)

Ref Expression
Hypotheses latlej.b 𝐵 = ( Base ‘ 𝐾 )
latlej.l = ( le ‘ 𝐾 )
latlej.j = ( join ‘ 𝐾 )
Assertion latnlej2l ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ ¬ 𝑋 ( 𝑌 𝑍 ) ) → ¬ 𝑋 𝑌 )

Proof

Step Hyp Ref Expression
1 latlej.b 𝐵 = ( Base ‘ 𝐾 )
2 latlej.l = ( le ‘ 𝐾 )
3 latlej.j = ( join ‘ 𝐾 )
4 1 2 3 latnlej2 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ ¬ 𝑋 ( 𝑌 𝑍 ) ) → ( ¬ 𝑋 𝑌 ∧ ¬ 𝑋 𝑍 ) )
5 4 simpld ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ ¬ 𝑋 ( 𝑌 𝑍 ) ) → ¬ 𝑋 𝑌 )