| Step |
Hyp |
Ref |
Expression |
| 1 |
|
8nn |
⊢ 8 ∈ ℕ |
| 2 |
|
id |
⊢ ( 8 ∈ ℕ → 8 ∈ ℕ ) |
| 3 |
2
|
lcmfunnnd |
⊢ ( 8 ∈ ℕ → ( lcm ‘ ( 1 ... 8 ) ) = ( ( lcm ‘ ( 1 ... ( 8 − 1 ) ) ) lcm 8 ) ) |
| 4 |
1 3
|
ax-mp |
⊢ ( lcm ‘ ( 1 ... 8 ) ) = ( ( lcm ‘ ( 1 ... ( 8 − 1 ) ) ) lcm 8 ) |
| 5 |
|
8m1e7 |
⊢ ( 8 − 1 ) = 7 |
| 6 |
5
|
oveq2i |
⊢ ( 1 ... ( 8 − 1 ) ) = ( 1 ... 7 ) |
| 7 |
6
|
fveq2i |
⊢ ( lcm ‘ ( 1 ... ( 8 − 1 ) ) ) = ( lcm ‘ ( 1 ... 7 ) ) |
| 8 |
7
|
oveq1i |
⊢ ( ( lcm ‘ ( 1 ... ( 8 − 1 ) ) ) lcm 8 ) = ( ( lcm ‘ ( 1 ... 7 ) ) lcm 8 ) |
| 9 |
|
lcm7un |
⊢ ( lcm ‘ ( 1 ... 7 ) ) = ; ; 4 2 0 |
| 10 |
9
|
oveq1i |
⊢ ( ( lcm ‘ ( 1 ... 7 ) ) lcm 8 ) = ( ; ; 4 2 0 lcm 8 ) |
| 11 |
8 10
|
eqtri |
⊢ ( ( lcm ‘ ( 1 ... ( 8 − 1 ) ) ) lcm 8 ) = ( ; ; 4 2 0 lcm 8 ) |
| 12 |
|
420lcm8e840 |
⊢ ( ; ; 4 2 0 lcm 8 ) = ; ; 8 4 0 |
| 13 |
4 11 12
|
3eqtri |
⊢ ( lcm ‘ ( 1 ... 8 ) ) = ; ; 8 4 0 |