Step |
Hyp |
Ref |
Expression |
1 |
|
8nn |
⊢ 8 ∈ ℕ |
2 |
|
id |
⊢ ( 8 ∈ ℕ → 8 ∈ ℕ ) |
3 |
2
|
lcmfunnnd |
⊢ ( 8 ∈ ℕ → ( lcm ‘ ( 1 ... 8 ) ) = ( ( lcm ‘ ( 1 ... ( 8 − 1 ) ) ) lcm 8 ) ) |
4 |
1 3
|
ax-mp |
⊢ ( lcm ‘ ( 1 ... 8 ) ) = ( ( lcm ‘ ( 1 ... ( 8 − 1 ) ) ) lcm 8 ) |
5 |
|
8m1e7 |
⊢ ( 8 − 1 ) = 7 |
6 |
5
|
oveq2i |
⊢ ( 1 ... ( 8 − 1 ) ) = ( 1 ... 7 ) |
7 |
6
|
fveq2i |
⊢ ( lcm ‘ ( 1 ... ( 8 − 1 ) ) ) = ( lcm ‘ ( 1 ... 7 ) ) |
8 |
7
|
oveq1i |
⊢ ( ( lcm ‘ ( 1 ... ( 8 − 1 ) ) ) lcm 8 ) = ( ( lcm ‘ ( 1 ... 7 ) ) lcm 8 ) |
9 |
|
lcm7un |
⊢ ( lcm ‘ ( 1 ... 7 ) ) = ; ; 4 2 0 |
10 |
9
|
oveq1i |
⊢ ( ( lcm ‘ ( 1 ... 7 ) ) lcm 8 ) = ( ; ; 4 2 0 lcm 8 ) |
11 |
8 10
|
eqtri |
⊢ ( ( lcm ‘ ( 1 ... ( 8 − 1 ) ) ) lcm 8 ) = ( ; ; 4 2 0 lcm 8 ) |
12 |
|
420lcm8e840 |
⊢ ( ; ; 4 2 0 lcm 8 ) = ; ; 8 4 0 |
13 |
4 11 12
|
3eqtri |
⊢ ( lcm ‘ ( 1 ... 8 ) ) = ; ; 8 4 0 |