Metamath Proof Explorer
		
		
		
		Description:  Addition to both sides of 'less than or equal to'.  (Contributed by NM, 11-Aug-1999)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | lt2.1 | ⊢ 𝐴  ∈  ℝ | 
					
						|  |  | lt2.2 | ⊢ 𝐵  ∈  ℝ | 
					
						|  |  | lt2.3 | ⊢ 𝐶  ∈  ℝ | 
				
					|  | Assertion | leadd1i | ⊢  ( 𝐴  ≤  𝐵  ↔  ( 𝐴  +  𝐶 )  ≤  ( 𝐵  +  𝐶 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lt2.1 | ⊢ 𝐴  ∈  ℝ | 
						
							| 2 |  | lt2.2 | ⊢ 𝐵  ∈  ℝ | 
						
							| 3 |  | lt2.3 | ⊢ 𝐶  ∈  ℝ | 
						
							| 4 |  | leadd1 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( 𝐴  ≤  𝐵  ↔  ( 𝐴  +  𝐶 )  ≤  ( 𝐵  +  𝐶 ) ) ) | 
						
							| 5 | 1 2 3 4 | mp3an | ⊢ ( 𝐴  ≤  𝐵  ↔  ( 𝐴  +  𝐶 )  ≤  ( 𝐵  +  𝐶 ) ) |