Description: An ortholattice is distributive in one ordering direction. (Contributed by NM, 27-Apr-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ledi.1 | ⊢ 𝐴 ∈ Cℋ | |
| ledi.2 | ⊢ 𝐵 ∈ Cℋ | ||
| ledi.3 | ⊢ 𝐶 ∈ Cℋ | ||
| Assertion | lediri | ⊢ ( ( 𝐴 ∩ 𝐶 ) ∨ℋ ( 𝐵 ∩ 𝐶 ) ) ⊆ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ledi.1 | ⊢ 𝐴 ∈ Cℋ | |
| 2 | ledi.2 | ⊢ 𝐵 ∈ Cℋ | |
| 3 | ledi.3 | ⊢ 𝐶 ∈ Cℋ | |
| 4 | 3 1 2 | ledii | ⊢ ( ( 𝐶 ∩ 𝐴 ) ∨ℋ ( 𝐶 ∩ 𝐵 ) ) ⊆ ( 𝐶 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) |
| 5 | incom | ⊢ ( 𝐴 ∩ 𝐶 ) = ( 𝐶 ∩ 𝐴 ) | |
| 6 | incom | ⊢ ( 𝐵 ∩ 𝐶 ) = ( 𝐶 ∩ 𝐵 ) | |
| 7 | 5 6 | oveq12i | ⊢ ( ( 𝐴 ∩ 𝐶 ) ∨ℋ ( 𝐵 ∩ 𝐶 ) ) = ( ( 𝐶 ∩ 𝐴 ) ∨ℋ ( 𝐶 ∩ 𝐵 ) ) |
| 8 | incom | ⊢ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ 𝐶 ) = ( 𝐶 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) | |
| 9 | 4 7 8 | 3sstr4i | ⊢ ( ( 𝐴 ∩ 𝐶 ) ∨ℋ ( 𝐵 ∩ 𝐶 ) ) ⊆ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ 𝐶 ) |