Description: Negative of one side of 'less than or equal to'. (Contributed by Glauco Siliprandi, 2-Jan-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | leneg2d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| leneg2d.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| Assertion | leneg2d | ⊢ ( 𝜑 → ( 𝐴 ≤ - 𝐵 ↔ 𝐵 ≤ - 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leneg2d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | leneg2d.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | 2 | renegcld | ⊢ ( 𝜑 → - 𝐵 ∈ ℝ ) |
| 4 | 1 3 | lenegd | ⊢ ( 𝜑 → ( 𝐴 ≤ - 𝐵 ↔ - - 𝐵 ≤ - 𝐴 ) ) |
| 5 | 2 | recnd | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 6 | 5 | negnegd | ⊢ ( 𝜑 → - - 𝐵 = 𝐵 ) |
| 7 | 6 | breq1d | ⊢ ( 𝜑 → ( - - 𝐵 ≤ - 𝐴 ↔ 𝐵 ≤ - 𝐴 ) ) |
| 8 | 4 7 | bitrd | ⊢ ( 𝜑 → ( 𝐴 ≤ - 𝐵 ↔ 𝐵 ≤ - 𝐴 ) ) |