Metamath Proof Explorer
Description: Create an atom under a co-atom. Part of proof of Lemma B in Crawley
p. 112. (Contributed by NM, 21-Nov-2012)
|
|
Ref |
Expression |
|
Hypotheses |
lhpat.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
|
|
lhpat.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
|
|
lhpat.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
|
|
lhpat.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
|
|
lhpat.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
|
|
lhpat2.r |
⊢ 𝑅 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) |
|
Assertion |
lhpat2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ) → 𝑅 ∈ 𝐴 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
lhpat.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
lhpat.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
lhpat.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
lhpat.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
lhpat.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
lhpat2.r |
⊢ 𝑅 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) |
7 |
1 2 3 4 5
|
lhpat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ∈ 𝐴 ) |
8 |
6 7
|
eqeltrid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ) → 𝑅 ∈ 𝐴 ) |