Metamath Proof Explorer


Theorem lhpat2

Description: Create an atom under a co-atom. Part of proof of Lemma B in Crawley p. 112. (Contributed by NM, 21-Nov-2012)

Ref Expression
Hypotheses lhpat.l = ( le ‘ 𝐾 )
lhpat.j = ( join ‘ 𝐾 )
lhpat.m = ( meet ‘ 𝐾 )
lhpat.a 𝐴 = ( Atoms ‘ 𝐾 )
lhpat.h 𝐻 = ( LHyp ‘ 𝐾 )
lhpat2.r 𝑅 = ( ( 𝑃 𝑄 ) 𝑊 )
Assertion lhpat2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴𝑃𝑄 ) ) → 𝑅𝐴 )

Proof

Step Hyp Ref Expression
1 lhpat.l = ( le ‘ 𝐾 )
2 lhpat.j = ( join ‘ 𝐾 )
3 lhpat.m = ( meet ‘ 𝐾 )
4 lhpat.a 𝐴 = ( Atoms ‘ 𝐾 )
5 lhpat.h 𝐻 = ( LHyp ‘ 𝐾 )
6 lhpat2.r 𝑅 = ( ( 𝑃 𝑄 ) 𝑊 )
7 1 2 3 4 5 lhpat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴𝑃𝑄 ) ) → ( ( 𝑃 𝑄 ) 𝑊 ) ∈ 𝐴 )
8 6 7 eqeltrid ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴𝑃𝑄 ) ) → 𝑅𝐴 )