Metamath Proof Explorer
Description: Comparison of a number and its negative to zero. Theorem I.23 of
Apostol p. 20. (Contributed by Mario Carneiro, 27-May-2016)
|
|
Ref |
Expression |
|
Hypothesis |
leidd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
|
Assertion |
lt0neg1d |
⊢ ( 𝜑 → ( 𝐴 < 0 ↔ 0 < - 𝐴 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
leidd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
lt0neg1 |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 < 0 ↔ 0 < - 𝐴 ) ) |
3 |
1 2
|
syl |
⊢ ( 𝜑 → ( 𝐴 < 0 ↔ 0 < - 𝐴 ) ) |