Metamath Proof Explorer
Description: Swap denominator with other side of 'less than'. (Contributed by NM, 26-Sep-1999)
|
|
Ref |
Expression |
|
Hypotheses |
ltplus1.1 |
⊢ 𝐴 ∈ ℝ |
|
|
prodgt0.2 |
⊢ 𝐵 ∈ ℝ |
|
|
ltmul1.3 |
⊢ 𝐶 ∈ ℝ |
|
|
ltdiv23i.4 |
⊢ 0 < 𝐵 |
|
|
ltdiv23i.5 |
⊢ 0 < 𝐶 |
|
Assertion |
ltdiv23ii |
⊢ ( ( 𝐴 / 𝐵 ) < 𝐶 ↔ ( 𝐴 / 𝐶 ) < 𝐵 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ltplus1.1 |
⊢ 𝐴 ∈ ℝ |
| 2 |
|
prodgt0.2 |
⊢ 𝐵 ∈ ℝ |
| 3 |
|
ltmul1.3 |
⊢ 𝐶 ∈ ℝ |
| 4 |
|
ltdiv23i.4 |
⊢ 0 < 𝐵 |
| 5 |
|
ltdiv23i.5 |
⊢ 0 < 𝐶 |
| 6 |
1 2 3
|
ltdiv23i |
⊢ ( ( 0 < 𝐵 ∧ 0 < 𝐶 ) → ( ( 𝐴 / 𝐵 ) < 𝐶 ↔ ( 𝐴 / 𝐶 ) < 𝐵 ) ) |
| 7 |
4 5 6
|
mp2an |
⊢ ( ( 𝐴 / 𝐵 ) < 𝐶 ↔ ( 𝐴 / 𝐶 ) < 𝐵 ) |