Metamath Proof Explorer


Theorem ltnegcon1d

Description: Contraposition of negative in 'less than'. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses leidd.1 ( 𝜑𝐴 ∈ ℝ )
ltnegd.2 ( 𝜑𝐵 ∈ ℝ )
ltnegcon1d.3 ( 𝜑 → - 𝐴 < 𝐵 )
Assertion ltnegcon1d ( 𝜑 → - 𝐵 < 𝐴 )

Proof

Step Hyp Ref Expression
1 leidd.1 ( 𝜑𝐴 ∈ ℝ )
2 ltnegd.2 ( 𝜑𝐵 ∈ ℝ )
3 ltnegcon1d.3 ( 𝜑 → - 𝐴 < 𝐵 )
4 ltnegcon1 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( - 𝐴 < 𝐵 ↔ - 𝐵 < 𝐴 ) )
5 1 2 4 syl2anc ( 𝜑 → ( - 𝐴 < 𝐵 ↔ - 𝐵 < 𝐴 ) )
6 3 5 mpbid ( 𝜑 → - 𝐵 < 𝐴 )