Metamath Proof Explorer


Theorem ltnegd

Description: Negative of both sides of 'less than'. Theorem I.23 of Apostol p. 20. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses leidd.1 ( 𝜑𝐴 ∈ ℝ )
ltnegd.2 ( 𝜑𝐵 ∈ ℝ )
Assertion ltnegd ( 𝜑 → ( 𝐴 < 𝐵 ↔ - 𝐵 < - 𝐴 ) )

Proof

Step Hyp Ref Expression
1 leidd.1 ( 𝜑𝐴 ∈ ℝ )
2 ltnegd.2 ( 𝜑𝐵 ∈ ℝ )
3 ltneg ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ - 𝐵 < - 𝐴 ) )
4 1 2 3 syl2anc ( 𝜑 → ( 𝐴 < 𝐵 ↔ - 𝐵 < - 𝐴 ) )