Metamath Proof Explorer


Theorem luklem4

Description: Used to rederive standard propositional axioms from Lukasiewicz'. (Contributed by NM, 22-Dec-2002) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion luklem4 ( ( ( ( ¬ 𝜑𝜑 ) → 𝜑 ) → 𝜓 ) → 𝜓 )

Proof

Step Hyp Ref Expression
1 luk-2 ( ( ¬ ( ( ¬ 𝜑𝜑 ) → 𝜑 ) → ( ( ¬ 𝜑𝜑 ) → 𝜑 ) ) → ( ( ¬ 𝜑𝜑 ) → 𝜑 ) )
2 luk-2 ( ( ¬ 𝜑𝜑 ) → 𝜑 )
3 luklem3 ( ( ( ¬ 𝜑𝜑 ) → 𝜑 ) → ( ( ( ¬ ( ( ¬ 𝜑𝜑 ) → 𝜑 ) → ( ( ¬ 𝜑𝜑 ) → 𝜑 ) ) → ( ( ¬ 𝜑𝜑 ) → 𝜑 ) ) → ( ¬ 𝜓 → ( ( ¬ 𝜑𝜑 ) → 𝜑 ) ) ) )
4 2 3 ax-mp ( ( ( ¬ ( ( ¬ 𝜑𝜑 ) → 𝜑 ) → ( ( ¬ 𝜑𝜑 ) → 𝜑 ) ) → ( ( ¬ 𝜑𝜑 ) → 𝜑 ) ) → ( ¬ 𝜓 → ( ( ¬ 𝜑𝜑 ) → 𝜑 ) ) )
5 1 4 ax-mp ( ¬ 𝜓 → ( ( ¬ 𝜑𝜑 ) → 𝜑 ) )
6 luk-1 ( ( ¬ 𝜓 → ( ( ¬ 𝜑𝜑 ) → 𝜑 ) ) → ( ( ( ( ¬ 𝜑𝜑 ) → 𝜑 ) → 𝜓 ) → ( ¬ 𝜓𝜓 ) ) )
7 5 6 ax-mp ( ( ( ( ¬ 𝜑𝜑 ) → 𝜑 ) → 𝜓 ) → ( ¬ 𝜓𝜓 ) )
8 luk-2 ( ( ¬ 𝜓𝜓 ) → 𝜓 )
9 7 8 luklem1 ( ( ( ( ¬ 𝜑𝜑 ) → 𝜑 ) → 𝜓 ) → 𝜓 )