Step |
Hyp |
Ref |
Expression |
1 |
|
luk-2 |
⊢ ( ( ¬ ( ( ¬ 𝜑 → 𝜑 ) → 𝜑 ) → ( ( ¬ 𝜑 → 𝜑 ) → 𝜑 ) ) → ( ( ¬ 𝜑 → 𝜑 ) → 𝜑 ) ) |
2 |
|
luk-2 |
⊢ ( ( ¬ 𝜑 → 𝜑 ) → 𝜑 ) |
3 |
|
luklem3 |
⊢ ( ( ( ¬ 𝜑 → 𝜑 ) → 𝜑 ) → ( ( ( ¬ ( ( ¬ 𝜑 → 𝜑 ) → 𝜑 ) → ( ( ¬ 𝜑 → 𝜑 ) → 𝜑 ) ) → ( ( ¬ 𝜑 → 𝜑 ) → 𝜑 ) ) → ( ¬ 𝜓 → ( ( ¬ 𝜑 → 𝜑 ) → 𝜑 ) ) ) ) |
4 |
2 3
|
ax-mp |
⊢ ( ( ( ¬ ( ( ¬ 𝜑 → 𝜑 ) → 𝜑 ) → ( ( ¬ 𝜑 → 𝜑 ) → 𝜑 ) ) → ( ( ¬ 𝜑 → 𝜑 ) → 𝜑 ) ) → ( ¬ 𝜓 → ( ( ¬ 𝜑 → 𝜑 ) → 𝜑 ) ) ) |
5 |
1 4
|
ax-mp |
⊢ ( ¬ 𝜓 → ( ( ¬ 𝜑 → 𝜑 ) → 𝜑 ) ) |
6 |
|
luk-1 |
⊢ ( ( ¬ 𝜓 → ( ( ¬ 𝜑 → 𝜑 ) → 𝜑 ) ) → ( ( ( ( ¬ 𝜑 → 𝜑 ) → 𝜑 ) → 𝜓 ) → ( ¬ 𝜓 → 𝜓 ) ) ) |
7 |
5 6
|
ax-mp |
⊢ ( ( ( ( ¬ 𝜑 → 𝜑 ) → 𝜑 ) → 𝜓 ) → ( ¬ 𝜓 → 𝜓 ) ) |
8 |
|
luk-2 |
⊢ ( ( ¬ 𝜓 → 𝜓 ) → 𝜓 ) |
9 |
7 8
|
luklem1 |
⊢ ( ( ( ( ¬ 𝜑 → 𝜑 ) → 𝜑 ) → 𝜓 ) → 𝜓 ) |