Description: Every equivalence relation implies equivalent coelements. (Contributed by Peter Mazsa, 20-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mainerim | ⊢ ( 𝑅 ErALTV 𝐴 → CoElEqvRel 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mainer2 | ⊢ ( 𝑅 ErALTV 𝐴 → ( CoElEqvRel 𝐴 ∧ ¬ ∅ ∈ 𝐴 ) ) | |
| 2 | 1 | simpld | ⊢ ( 𝑅 ErALTV 𝐴 → CoElEqvRel 𝐴 ) |