Metamath Proof Explorer


Theorem mainerim

Description: Every equivalence relation implies equivalent coelements. (Contributed by Peter Mazsa, 20-Oct-2021)

Ref Expression
Assertion mainerim ( 𝑅 ErALTV 𝐴 → CoElEqvRel 𝐴 )

Proof

Step Hyp Ref Expression
1 mainer2 ( 𝑅 ErALTV 𝐴 → ( CoElEqvRel 𝐴 ∧ ¬ ∅ ∈ 𝐴 ) )
2 1 simpld ( 𝑅 ErALTV 𝐴 → CoElEqvRel 𝐴 )