Description: Every equivalence relation implies equivalent coelements. (Contributed by Peter Mazsa, 20-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | mainerim | ⊢ ( 𝑅 ErALTV 𝐴 → CoElEqvRel 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mainer2 | ⊢ ( 𝑅 ErALTV 𝐴 → ( CoElEqvRel 𝐴 ∧ ¬ ∅ ∈ 𝐴 ) ) | |
2 | 1 | simpld | ⊢ ( 𝑅 ErALTV 𝐴 → CoElEqvRel 𝐴 ) |