| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mavmumamul1.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | mavmumamul1.m | ⊢  ×   =  ( 𝑅  maMul  〈 𝑁 ,  𝑁 ,  { ∅ } 〉 ) | 
						
							| 3 |  | mavmumamul1.t | ⊢  ·   =  ( 𝑅  maVecMul  〈 𝑁 ,  𝑁 〉 ) | 
						
							| 4 |  | mavmumamul1.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 5 |  | mavmumamul1.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 6 |  | mavmumamul1.n | ⊢ ( 𝜑  →  𝑁  ∈  Fin ) | 
						
							| 7 |  | mavmumamul1.x | ⊢ ( 𝜑  →  𝑋  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 8 |  | mavmumamul1.y | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝐵  ↑m  𝑁 ) ) | 
						
							| 9 |  | mavmumamul1.z | ⊢ ( 𝜑  →  𝑍  ∈  ( 𝐵  ↑m  ( 𝑁  ×  { ∅ } ) ) ) | 
						
							| 10 | 1 4 | matbas2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝐵  ↑m  ( 𝑁  ×  𝑁 ) )  =  ( Base ‘ 𝐴 ) ) | 
						
							| 11 | 6 5 10 | syl2anc | ⊢ ( 𝜑  →  ( 𝐵  ↑m  ( 𝑁  ×  𝑁 ) )  =  ( Base ‘ 𝐴 ) ) | 
						
							| 12 | 7 11 | eleqtrrd | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝐵  ↑m  ( 𝑁  ×  𝑁 ) ) ) | 
						
							| 13 | 2 3 4 5 6 6 12 8 9 | mvmumamul1 | ⊢ ( 𝜑  →  ( ∀ 𝑗  ∈  𝑁 ( 𝑌 ‘ 𝑗 )  =  ( 𝑗 𝑍 ∅ )  →  ∀ 𝑖  ∈  𝑁 ( ( 𝑋  ·  𝑌 ) ‘ 𝑖 )  =  ( 𝑖 ( 𝑋  ×  𝑍 ) ∅ ) ) ) |