| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mavmumamul1.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 2 |
|
mavmumamul1.m |
⊢ × = ( 𝑅 maMul 〈 𝑁 , 𝑁 , { ∅ } 〉 ) |
| 3 |
|
mavmumamul1.t |
⊢ · = ( 𝑅 maVecMul 〈 𝑁 , 𝑁 〉 ) |
| 4 |
|
mavmumamul1.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 5 |
|
mavmumamul1.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 6 |
|
mavmumamul1.n |
⊢ ( 𝜑 → 𝑁 ∈ Fin ) |
| 7 |
|
mavmumamul1.x |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐴 ) ) |
| 8 |
|
mavmumamul1.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝐵 ↑m 𝑁 ) ) |
| 9 |
|
mavmumamul1.z |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝐵 ↑m ( 𝑁 × { ∅ } ) ) ) |
| 10 |
1 4
|
matbas2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝐵 ↑m ( 𝑁 × 𝑁 ) ) = ( Base ‘ 𝐴 ) ) |
| 11 |
6 5 10
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 ↑m ( 𝑁 × 𝑁 ) ) = ( Base ‘ 𝐴 ) ) |
| 12 |
7 11
|
eleqtrrd |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐵 ↑m ( 𝑁 × 𝑁 ) ) ) |
| 13 |
2 3 4 5 6 6 12 8 9
|
mvmumamul1 |
⊢ ( 𝜑 → ( ∀ 𝑗 ∈ 𝑁 ( 𝑌 ‘ 𝑗 ) = ( 𝑗 𝑍 ∅ ) → ∀ 𝑖 ∈ 𝑁 ( ( 𝑋 · 𝑌 ) ‘ 𝑖 ) = ( 𝑖 ( 𝑋 × 𝑍 ) ∅ ) ) ) |