Metamath Proof Explorer


Theorem mavmumamul1

Description: The multiplication of an NxN matrix with an N-dimensional vector corresponds to the matrix multiplication of an NxN matrix with an Nx1 matrix. (Contributed by AV, 14-Mar-2019)

Ref Expression
Hypotheses mavmumamul1.a 𝐴 = ( 𝑁 Mat 𝑅 )
mavmumamul1.m × = ( 𝑅 maMul ⟨ 𝑁 , 𝑁 , { ∅ } ⟩ )
mavmumamul1.t · = ( 𝑅 maVecMul ⟨ 𝑁 , 𝑁 ⟩ )
mavmumamul1.b 𝐵 = ( Base ‘ 𝑅 )
mavmumamul1.r ( 𝜑𝑅 ∈ Ring )
mavmumamul1.n ( 𝜑𝑁 ∈ Fin )
mavmumamul1.x ( 𝜑𝑋 ∈ ( Base ‘ 𝐴 ) )
mavmumamul1.y ( 𝜑𝑌 ∈ ( 𝐵m 𝑁 ) )
mavmumamul1.z ( 𝜑𝑍 ∈ ( 𝐵m ( 𝑁 × { ∅ } ) ) )
Assertion mavmumamul1 ( 𝜑 → ( ∀ 𝑗𝑁 ( 𝑌𝑗 ) = ( 𝑗 𝑍 ∅ ) → ∀ 𝑖𝑁 ( ( 𝑋 · 𝑌 ) ‘ 𝑖 ) = ( 𝑖 ( 𝑋 × 𝑍 ) ∅ ) ) )

Proof

Step Hyp Ref Expression
1 mavmumamul1.a 𝐴 = ( 𝑁 Mat 𝑅 )
2 mavmumamul1.m × = ( 𝑅 maMul ⟨ 𝑁 , 𝑁 , { ∅ } ⟩ )
3 mavmumamul1.t · = ( 𝑅 maVecMul ⟨ 𝑁 , 𝑁 ⟩ )
4 mavmumamul1.b 𝐵 = ( Base ‘ 𝑅 )
5 mavmumamul1.r ( 𝜑𝑅 ∈ Ring )
6 mavmumamul1.n ( 𝜑𝑁 ∈ Fin )
7 mavmumamul1.x ( 𝜑𝑋 ∈ ( Base ‘ 𝐴 ) )
8 mavmumamul1.y ( 𝜑𝑌 ∈ ( 𝐵m 𝑁 ) )
9 mavmumamul1.z ( 𝜑𝑍 ∈ ( 𝐵m ( 𝑁 × { ∅ } ) ) )
10 1 4 matbas2 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝐵m ( 𝑁 × 𝑁 ) ) = ( Base ‘ 𝐴 ) )
11 6 5 10 syl2anc ( 𝜑 → ( 𝐵m ( 𝑁 × 𝑁 ) ) = ( Base ‘ 𝐴 ) )
12 7 11 eleqtrrd ( 𝜑𝑋 ∈ ( 𝐵m ( 𝑁 × 𝑁 ) ) )
13 2 3 4 5 6 6 12 8 9 mvmumamul1 ( 𝜑 → ( ∀ 𝑗𝑁 ( 𝑌𝑗 ) = ( 𝑗 𝑍 ∅ ) → ∀ 𝑖𝑁 ( ( 𝑋 · 𝑌 ) ‘ 𝑖 ) = ( 𝑖 ( 𝑋 × 𝑍 ) ∅ ) ) )