Database SUPPLEMENTARY MATERIAL (USERS' MATHBOXES) Mathbox for Jarvin Udandy mdandyvr3  
				
		 
		
			
		 
		Description:   Given the equivalences set in the hypotheses, there exist a proof where
       ch, th, ta, et match ze, si accordingly.  (Contributed by Jarvin Udandy , 7-Sep-2016) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						mdandyvr3.1 ⊢  ( 𝜑   ↔  𝜁  )  
					
						mdandyvr3.2 ⊢  ( 𝜓   ↔  𝜎  )  
					
						mdandyvr3.3 ⊢  ( 𝜒   ↔  𝜓  )  
					
						mdandyvr3.4 ⊢  ( 𝜃   ↔  𝜓  )  
					
						mdandyvr3.5 ⊢  ( 𝜏   ↔  𝜑  )  
					
						mdandyvr3.6 ⊢  ( 𝜂   ↔  𝜑  )  
				
					Assertion 
					mdandyvr3 ⊢   ( ( ( ( 𝜒   ↔  𝜎  )  ∧  ( 𝜃   ↔  𝜎  ) )  ∧  ( 𝜏   ↔  𝜁  ) )  ∧  ( 𝜂   ↔  𝜁  ) )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							mdandyvr3.1 ⊢  ( 𝜑   ↔  𝜁  )  
						
							2 
								
							 
							mdandyvr3.2 ⊢  ( 𝜓   ↔  𝜎  )  
						
							3 
								
							 
							mdandyvr3.3 ⊢  ( 𝜒   ↔  𝜓  )  
						
							4 
								
							 
							mdandyvr3.4 ⊢  ( 𝜃   ↔  𝜓  )  
						
							5 
								
							 
							mdandyvr3.5 ⊢  ( 𝜏   ↔  𝜑  )  
						
							6 
								
							 
							mdandyvr3.6 ⊢  ( 𝜂   ↔  𝜑  )  
						
							7 
								3  2 
							 
							bitri ⊢  ( 𝜒   ↔  𝜎  )  
						
							8 
								4  2 
							 
							bitri ⊢  ( 𝜃   ↔  𝜎  )  
						
							9 
								7  8 
							 
							pm3.2i ⊢  ( ( 𝜒   ↔  𝜎  )  ∧  ( 𝜃   ↔  𝜎  ) )  
						
							10 
								5  1 
							 
							bitri ⊢  ( 𝜏   ↔  𝜁  )  
						
							11 
								9  10 
							 
							pm3.2i ⊢  ( ( ( 𝜒   ↔  𝜎  )  ∧  ( 𝜃   ↔  𝜎  ) )  ∧  ( 𝜏   ↔  𝜁  ) )  
						
							12 
								6  1 
							 
							bitri ⊢  ( 𝜂   ↔  𝜁  )  
						
							13 
								11  12 
							 
							pm3.2i ⊢  ( ( ( ( 𝜒   ↔  𝜎  )  ∧  ( 𝜃   ↔  𝜎  ) )  ∧  ( 𝜏   ↔  𝜁  ) )  ∧  ( 𝜂   ↔  𝜁  ) )