Metamath Proof Explorer


Theorem mdetuni

Description: According to the definition in Weierstrass p. 272, the determinant function is the unique multilinear, alternating and normalized function from the algebra of square matrices of the same dimension over a commutative ring to this ring. So for any multilinear (mdetuni.li and mdetuni.sc), alternating (mdetuni.al) and normalized (mdetuni.no) function D (mdetuni.ff) from the algebra of square matrices (mdetuni.a) to their underlying commutative ring (mdetuni.cr), the function value of this function D for a matrix F (mdetuni.f) is the determinant of this matrix. (Contributed by Stefan O'Rear, 15-Jul-2018) (Revised by Alexander van der Vekens, 8-Feb-2019)

Ref Expression
Hypotheses mdetuni.a 𝐴 = ( 𝑁 Mat 𝑅 )
mdetuni.b 𝐵 = ( Base ‘ 𝐴 )
mdetuni.k 𝐾 = ( Base ‘ 𝑅 )
mdetuni.0g 0 = ( 0g𝑅 )
mdetuni.1r 1 = ( 1r𝑅 )
mdetuni.pg + = ( +g𝑅 )
mdetuni.tg · = ( .r𝑅 )
mdetuni.n ( 𝜑𝑁 ∈ Fin )
mdetuni.r ( 𝜑𝑅 ∈ Ring )
mdetuni.ff ( 𝜑𝐷 : 𝐵𝐾 )
mdetuni.al ( 𝜑 → ∀ 𝑥𝐵𝑦𝑁𝑧𝑁 ( ( 𝑦𝑧 ∧ ∀ 𝑤𝑁 ( 𝑦 𝑥 𝑤 ) = ( 𝑧 𝑥 𝑤 ) ) → ( 𝐷𝑥 ) = 0 ) )
mdetuni.li ( 𝜑 → ∀ 𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑦 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷𝑥 ) = ( ( 𝐷𝑦 ) + ( 𝐷𝑧 ) ) ) )
mdetuni.sc ( 𝜑 → ∀ 𝑥𝐵𝑦𝐾𝑧𝐵𝑤𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷𝑥 ) = ( 𝑦 · ( 𝐷𝑧 ) ) ) )
mdetuni.e 𝐸 = ( 𝑁 maDet 𝑅 )
mdetuni.cr ( 𝜑𝑅 ∈ CRing )
mdetuni.f ( 𝜑𝐹𝐵 )
mdetuni.no ( 𝜑 → ( 𝐷 ‘ ( 1r𝐴 ) ) = 1 )
Assertion mdetuni ( 𝜑 → ( 𝐷𝐹 ) = ( 𝐸𝐹 ) )

Proof

Step Hyp Ref Expression
1 mdetuni.a 𝐴 = ( 𝑁 Mat 𝑅 )
2 mdetuni.b 𝐵 = ( Base ‘ 𝐴 )
3 mdetuni.k 𝐾 = ( Base ‘ 𝑅 )
4 mdetuni.0g 0 = ( 0g𝑅 )
5 mdetuni.1r 1 = ( 1r𝑅 )
6 mdetuni.pg + = ( +g𝑅 )
7 mdetuni.tg · = ( .r𝑅 )
8 mdetuni.n ( 𝜑𝑁 ∈ Fin )
9 mdetuni.r ( 𝜑𝑅 ∈ Ring )
10 mdetuni.ff ( 𝜑𝐷 : 𝐵𝐾 )
11 mdetuni.al ( 𝜑 → ∀ 𝑥𝐵𝑦𝑁𝑧𝑁 ( ( 𝑦𝑧 ∧ ∀ 𝑤𝑁 ( 𝑦 𝑥 𝑤 ) = ( 𝑧 𝑥 𝑤 ) ) → ( 𝐷𝑥 ) = 0 ) )
12 mdetuni.li ( 𝜑 → ∀ 𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑦 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷𝑥 ) = ( ( 𝐷𝑦 ) + ( 𝐷𝑧 ) ) ) )
13 mdetuni.sc ( 𝜑 → ∀ 𝑥𝐵𝑦𝐾𝑧𝐵𝑤𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷𝑥 ) = ( 𝑦 · ( 𝐷𝑧 ) ) ) )
14 mdetuni.e 𝐸 = ( 𝑁 maDet 𝑅 )
15 mdetuni.cr ( 𝜑𝑅 ∈ CRing )
16 mdetuni.f ( 𝜑𝐹𝐵 )
17 mdetuni.no ( 𝜑 → ( 𝐷 ‘ ( 1r𝐴 ) ) = 1 )
18 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 mdetuni0 ( 𝜑 → ( 𝐷𝐹 ) = ( ( 𝐷 ‘ ( 1r𝐴 ) ) · ( 𝐸𝐹 ) ) )
19 17 oveq1d ( 𝜑 → ( ( 𝐷 ‘ ( 1r𝐴 ) ) · ( 𝐸𝐹 ) ) = ( 1 · ( 𝐸𝐹 ) ) )
20 14 1 2 3 mdetcl ( ( 𝑅 ∈ CRing ∧ 𝐹𝐵 ) → ( 𝐸𝐹 ) ∈ 𝐾 )
21 15 16 20 syl2anc ( 𝜑 → ( 𝐸𝐹 ) ∈ 𝐾 )
22 3 7 5 ringlidm ( ( 𝑅 ∈ Ring ∧ ( 𝐸𝐹 ) ∈ 𝐾 ) → ( 1 · ( 𝐸𝐹 ) ) = ( 𝐸𝐹 ) )
23 9 21 22 syl2anc ( 𝜑 → ( 1 · ( 𝐸𝐹 ) ) = ( 𝐸𝐹 ) )
24 18 19 23 3eqtrd ( 𝜑 → ( 𝐷𝐹 ) = ( 𝐸𝐹 ) )