| Step | Hyp | Ref | Expression | 
						
							| 1 |  | merco1 | ⊢ ( ( ( ( ( ⊥  →  𝜑 )  →  ( 𝜑  →  ⊥ ) )  →  ( 𝜑  →  ⊥ ) )  →  ( ⊥  →  𝜑 ) )  →  ( ( ( ⊥  →  𝜑 )  →  ⊥ )  →  ( 𝜑  →  ⊥ ) ) ) | 
						
							| 2 |  | merco1 | ⊢ ( ( ( ( ( ( ⊥  →  𝜑 )  →  ( 𝜑  →  ⊥ ) )  →  ( 𝜑  →  ⊥ ) )  →  ( ⊥  →  𝜑 ) )  →  ( ( ( ⊥  →  𝜑 )  →  ⊥ )  →  ( 𝜑  →  ⊥ ) ) )  →  ( ( ( ( ( ⊥  →  𝜑 )  →  ⊥ )  →  ( 𝜑  →  ⊥ ) )  →  ( ⊥  →  𝜑 ) )  →  ( 𝜑  →  ( ⊥  →  𝜑 ) ) ) ) | 
						
							| 3 | 1 2 | ax-mp | ⊢ ( ( ( ( ( ⊥  →  𝜑 )  →  ⊥ )  →  ( 𝜑  →  ⊥ ) )  →  ( ⊥  →  𝜑 ) )  →  ( 𝜑  →  ( ⊥  →  𝜑 ) ) ) | 
						
							| 4 |  | merco1 | ⊢ ( ( ( ( ( ( ⊥  →  𝜑 )  →  ⊥ )  →  ( 𝜑  →  ⊥ ) )  →  ( ⊥  →  𝜑 ) )  →  ( 𝜑  →  ( ⊥  →  𝜑 ) ) )  →  ( ( ( 𝜑  →  ( ⊥  →  𝜑 ) )  →  ( ⊥  →  𝜑 ) )  →  ( 𝜑  →  ( ⊥  →  𝜑 ) ) ) ) | 
						
							| 5 | 3 4 | ax-mp | ⊢ ( ( ( 𝜑  →  ( ⊥  →  𝜑 ) )  →  ( ⊥  →  𝜑 ) )  →  ( 𝜑  →  ( ⊥  →  𝜑 ) ) ) | 
						
							| 6 |  | merco1 | ⊢ ( ( ( ( ( ⊥  →  𝜑 )  →  ( 𝜑  →  ⊥ ) )  →  ( ( 𝜑  →  ( ⊥  →  𝜑 ) )  →  ⊥ ) )  →  ( 𝜑  →  ( ⊥  →  𝜑 ) ) )  →  ( ( ( 𝜑  →  ( ⊥  →  𝜑 ) )  →  ⊥ )  →  ( 𝜑  →  ⊥ ) ) ) | 
						
							| 7 |  | merco1 | ⊢ ( ( ( ( ( ( ⊥  →  𝜑 )  →  ( 𝜑  →  ⊥ ) )  →  ( ( 𝜑  →  ( ⊥  →  𝜑 ) )  →  ⊥ ) )  →  ( 𝜑  →  ( ⊥  →  𝜑 ) ) )  →  ( ( ( 𝜑  →  ( ⊥  →  𝜑 ) )  →  ⊥ )  →  ( 𝜑  →  ⊥ ) ) )  →  ( ( ( ( ( 𝜑  →  ( ⊥  →  𝜑 ) )  →  ⊥ )  →  ( 𝜑  →  ⊥ ) )  →  ( ⊥  →  𝜑 ) )  →  ( ( 𝜑  →  ( ⊥  →  𝜑 ) )  →  ( ⊥  →  𝜑 ) ) ) ) | 
						
							| 8 | 6 7 | ax-mp | ⊢ ( ( ( ( ( 𝜑  →  ( ⊥  →  𝜑 ) )  →  ⊥ )  →  ( 𝜑  →  ⊥ ) )  →  ( ⊥  →  𝜑 ) )  →  ( ( 𝜑  →  ( ⊥  →  𝜑 ) )  →  ( ⊥  →  𝜑 ) ) ) | 
						
							| 9 |  | merco1 | ⊢ ( ( ( ( ( ( 𝜑  →  ( ⊥  →  𝜑 ) )  →  ⊥ )  →  ( 𝜑  →  ⊥ ) )  →  ( ⊥  →  𝜑 ) )  →  ( ( 𝜑  →  ( ⊥  →  𝜑 ) )  →  ( ⊥  →  𝜑 ) ) )  →  ( ( ( ( 𝜑  →  ( ⊥  →  𝜑 ) )  →  ( ⊥  →  𝜑 ) )  →  ( 𝜑  →  ( ⊥  →  𝜑 ) ) )  →  ( 𝜑  →  ( 𝜑  →  ( ⊥  →  𝜑 ) ) ) ) ) | 
						
							| 10 | 8 9 | ax-mp | ⊢ ( ( ( ( 𝜑  →  ( ⊥  →  𝜑 ) )  →  ( ⊥  →  𝜑 ) )  →  ( 𝜑  →  ( ⊥  →  𝜑 ) ) )  →  ( 𝜑  →  ( 𝜑  →  ( ⊥  →  𝜑 ) ) ) ) | 
						
							| 11 | 5 10 | ax-mp | ⊢ ( 𝜑  →  ( 𝜑  →  ( ⊥  →  𝜑 ) ) ) | 
						
							| 12 |  | merco1 | ⊢ ( ( ( ( ( ⊥  →  𝜑 )  →  ( 𝜑  →  ⊥ ) )  →  ( 𝜑  →  ⊥ ) )  →  ( ⊥  →  𝜒 ) )  →  ( ( ( ⊥  →  𝜒 )  →  ⊥ )  →  ( 𝜑  →  ⊥ ) ) ) | 
						
							| 13 |  | merco1 | ⊢ ( ( ( ( ( ( ⊥  →  𝜑 )  →  ( 𝜑  →  ⊥ ) )  →  ( 𝜑  →  ⊥ ) )  →  ( ⊥  →  𝜒 ) )  →  ( ( ( ⊥  →  𝜒 )  →  ⊥ )  →  ( 𝜑  →  ⊥ ) ) )  →  ( ( ( ( ( ⊥  →  𝜒 )  →  ⊥ )  →  ( 𝜑  →  ⊥ ) )  →  ( ⊥  →  𝜑 ) )  →  ( 𝜑  →  ( ⊥  →  𝜑 ) ) ) ) | 
						
							| 14 | 12 13 | ax-mp | ⊢ ( ( ( ( ( ⊥  →  𝜒 )  →  ⊥ )  →  ( 𝜑  →  ⊥ ) )  →  ( ⊥  →  𝜑 ) )  →  ( 𝜑  →  ( ⊥  →  𝜑 ) ) ) | 
						
							| 15 |  | merco1 | ⊢ ( ( ( ( ( ( ⊥  →  𝜒 )  →  ⊥ )  →  ( 𝜑  →  ⊥ ) )  →  ( ⊥  →  𝜑 ) )  →  ( 𝜑  →  ( ⊥  →  𝜑 ) ) )  →  ( ( ( 𝜑  →  ( ⊥  →  𝜑 ) )  →  ( ⊥  →  𝜒 ) )  →  ( 𝜑  →  ( ⊥  →  𝜒 ) ) ) ) | 
						
							| 16 | 14 15 | ax-mp | ⊢ ( ( ( 𝜑  →  ( ⊥  →  𝜑 ) )  →  ( ⊥  →  𝜒 ) )  →  ( 𝜑  →  ( ⊥  →  𝜒 ) ) ) | 
						
							| 17 |  | merco1 | ⊢ ( ( ( ( ( ⊥  →  𝜒 )  →  ( ( 𝜑  →  ( 𝜑  →  ( ⊥  →  𝜑 ) ) )  →  ⊥ ) )  →  ( ( 𝜑  →  ( ⊥  →  𝜑 ) )  →  ⊥ ) )  →  ( 𝜑  →  ( ⊥  →  𝜒 ) ) )  →  ( ( ( 𝜑  →  ( ⊥  →  𝜒 ) )  →  ⊥ )  →  ( ( 𝜑  →  ( 𝜑  →  ( ⊥  →  𝜑 ) ) )  →  ⊥ ) ) ) | 
						
							| 18 |  | merco1 | ⊢ ( ( ( ( ( ( ⊥  →  𝜒 )  →  ( ( 𝜑  →  ( 𝜑  →  ( ⊥  →  𝜑 ) ) )  →  ⊥ ) )  →  ( ( 𝜑  →  ( ⊥  →  𝜑 ) )  →  ⊥ ) )  →  ( 𝜑  →  ( ⊥  →  𝜒 ) ) )  →  ( ( ( 𝜑  →  ( ⊥  →  𝜒 ) )  →  ⊥ )  →  ( ( 𝜑  →  ( 𝜑  →  ( ⊥  →  𝜑 ) ) )  →  ⊥ ) ) )  →  ( ( ( ( ( 𝜑  →  ( ⊥  →  𝜒 ) )  →  ⊥ )  →  ( ( 𝜑  →  ( 𝜑  →  ( ⊥  →  𝜑 ) ) )  →  ⊥ ) )  →  ( ⊥  →  𝜒 ) )  →  ( ( 𝜑  →  ( ⊥  →  𝜑 ) )  →  ( ⊥  →  𝜒 ) ) ) ) | 
						
							| 19 | 17 18 | ax-mp | ⊢ ( ( ( ( ( 𝜑  →  ( ⊥  →  𝜒 ) )  →  ⊥ )  →  ( ( 𝜑  →  ( 𝜑  →  ( ⊥  →  𝜑 ) ) )  →  ⊥ ) )  →  ( ⊥  →  𝜒 ) )  →  ( ( 𝜑  →  ( ⊥  →  𝜑 ) )  →  ( ⊥  →  𝜒 ) ) ) | 
						
							| 20 |  | merco1 | ⊢ ( ( ( ( ( ( 𝜑  →  ( ⊥  →  𝜒 ) )  →  ⊥ )  →  ( ( 𝜑  →  ( 𝜑  →  ( ⊥  →  𝜑 ) ) )  →  ⊥ ) )  →  ( ⊥  →  𝜒 ) )  →  ( ( 𝜑  →  ( ⊥  →  𝜑 ) )  →  ( ⊥  →  𝜒 ) ) )  →  ( ( ( ( 𝜑  →  ( ⊥  →  𝜑 ) )  →  ( ⊥  →  𝜒 ) )  →  ( 𝜑  →  ( ⊥  →  𝜒 ) ) )  →  ( ( 𝜑  →  ( 𝜑  →  ( ⊥  →  𝜑 ) ) )  →  ( 𝜑  →  ( ⊥  →  𝜒 ) ) ) ) ) | 
						
							| 21 | 19 20 | ax-mp | ⊢ ( ( ( ( 𝜑  →  ( ⊥  →  𝜑 ) )  →  ( ⊥  →  𝜒 ) )  →  ( 𝜑  →  ( ⊥  →  𝜒 ) ) )  →  ( ( 𝜑  →  ( 𝜑  →  ( ⊥  →  𝜑 ) ) )  →  ( 𝜑  →  ( ⊥  →  𝜒 ) ) ) ) | 
						
							| 22 | 16 21 | ax-mp | ⊢ ( ( 𝜑  →  ( 𝜑  →  ( ⊥  →  𝜑 ) ) )  →  ( 𝜑  →  ( ⊥  →  𝜒 ) ) ) | 
						
							| 23 | 11 22 | ax-mp | ⊢ ( 𝜑  →  ( ⊥  →  𝜒 ) ) |