Step |
Hyp |
Ref |
Expression |
1 |
|
merco1 |
⊢ ( ( ( ( ( ⊥ → 𝜑 ) → ( 𝜑 → ⊥ ) ) → ( 𝜑 → ⊥ ) ) → ( ⊥ → 𝜑 ) ) → ( ( ( ⊥ → 𝜑 ) → ⊥ ) → ( 𝜑 → ⊥ ) ) ) |
2 |
|
merco1 |
⊢ ( ( ( ( ( ( ⊥ → 𝜑 ) → ( 𝜑 → ⊥ ) ) → ( 𝜑 → ⊥ ) ) → ( ⊥ → 𝜑 ) ) → ( ( ( ⊥ → 𝜑 ) → ⊥ ) → ( 𝜑 → ⊥ ) ) ) → ( ( ( ( ( ⊥ → 𝜑 ) → ⊥ ) → ( 𝜑 → ⊥ ) ) → ( ⊥ → 𝜑 ) ) → ( 𝜑 → ( ⊥ → 𝜑 ) ) ) ) |
3 |
1 2
|
ax-mp |
⊢ ( ( ( ( ( ⊥ → 𝜑 ) → ⊥ ) → ( 𝜑 → ⊥ ) ) → ( ⊥ → 𝜑 ) ) → ( 𝜑 → ( ⊥ → 𝜑 ) ) ) |
4 |
|
merco1 |
⊢ ( ( ( ( ( ( ⊥ → 𝜑 ) → ⊥ ) → ( 𝜑 → ⊥ ) ) → ( ⊥ → 𝜑 ) ) → ( 𝜑 → ( ⊥ → 𝜑 ) ) ) → ( ( ( 𝜑 → ( ⊥ → 𝜑 ) ) → ( ⊥ → 𝜑 ) ) → ( 𝜑 → ( ⊥ → 𝜑 ) ) ) ) |
5 |
3 4
|
ax-mp |
⊢ ( ( ( 𝜑 → ( ⊥ → 𝜑 ) ) → ( ⊥ → 𝜑 ) ) → ( 𝜑 → ( ⊥ → 𝜑 ) ) ) |
6 |
|
merco1 |
⊢ ( ( ( ( ( ⊥ → 𝜑 ) → ( 𝜑 → ⊥ ) ) → ( ( 𝜑 → ( ⊥ → 𝜑 ) ) → ⊥ ) ) → ( 𝜑 → ( ⊥ → 𝜑 ) ) ) → ( ( ( 𝜑 → ( ⊥ → 𝜑 ) ) → ⊥ ) → ( 𝜑 → ⊥ ) ) ) |
7 |
|
merco1 |
⊢ ( ( ( ( ( ( ⊥ → 𝜑 ) → ( 𝜑 → ⊥ ) ) → ( ( 𝜑 → ( ⊥ → 𝜑 ) ) → ⊥ ) ) → ( 𝜑 → ( ⊥ → 𝜑 ) ) ) → ( ( ( 𝜑 → ( ⊥ → 𝜑 ) ) → ⊥ ) → ( 𝜑 → ⊥ ) ) ) → ( ( ( ( ( 𝜑 → ( ⊥ → 𝜑 ) ) → ⊥ ) → ( 𝜑 → ⊥ ) ) → ( ⊥ → 𝜑 ) ) → ( ( 𝜑 → ( ⊥ → 𝜑 ) ) → ( ⊥ → 𝜑 ) ) ) ) |
8 |
6 7
|
ax-mp |
⊢ ( ( ( ( ( 𝜑 → ( ⊥ → 𝜑 ) ) → ⊥ ) → ( 𝜑 → ⊥ ) ) → ( ⊥ → 𝜑 ) ) → ( ( 𝜑 → ( ⊥ → 𝜑 ) ) → ( ⊥ → 𝜑 ) ) ) |
9 |
|
merco1 |
⊢ ( ( ( ( ( ( 𝜑 → ( ⊥ → 𝜑 ) ) → ⊥ ) → ( 𝜑 → ⊥ ) ) → ( ⊥ → 𝜑 ) ) → ( ( 𝜑 → ( ⊥ → 𝜑 ) ) → ( ⊥ → 𝜑 ) ) ) → ( ( ( ( 𝜑 → ( ⊥ → 𝜑 ) ) → ( ⊥ → 𝜑 ) ) → ( 𝜑 → ( ⊥ → 𝜑 ) ) ) → ( 𝜑 → ( 𝜑 → ( ⊥ → 𝜑 ) ) ) ) ) |
10 |
8 9
|
ax-mp |
⊢ ( ( ( ( 𝜑 → ( ⊥ → 𝜑 ) ) → ( ⊥ → 𝜑 ) ) → ( 𝜑 → ( ⊥ → 𝜑 ) ) ) → ( 𝜑 → ( 𝜑 → ( ⊥ → 𝜑 ) ) ) ) |
11 |
5 10
|
ax-mp |
⊢ ( 𝜑 → ( 𝜑 → ( ⊥ → 𝜑 ) ) ) |
12 |
|
merco1 |
⊢ ( ( ( ( ( ⊥ → 𝜑 ) → ( 𝜑 → ⊥ ) ) → ( 𝜑 → ⊥ ) ) → ( ⊥ → 𝜒 ) ) → ( ( ( ⊥ → 𝜒 ) → ⊥ ) → ( 𝜑 → ⊥ ) ) ) |
13 |
|
merco1 |
⊢ ( ( ( ( ( ( ⊥ → 𝜑 ) → ( 𝜑 → ⊥ ) ) → ( 𝜑 → ⊥ ) ) → ( ⊥ → 𝜒 ) ) → ( ( ( ⊥ → 𝜒 ) → ⊥ ) → ( 𝜑 → ⊥ ) ) ) → ( ( ( ( ( ⊥ → 𝜒 ) → ⊥ ) → ( 𝜑 → ⊥ ) ) → ( ⊥ → 𝜑 ) ) → ( 𝜑 → ( ⊥ → 𝜑 ) ) ) ) |
14 |
12 13
|
ax-mp |
⊢ ( ( ( ( ( ⊥ → 𝜒 ) → ⊥ ) → ( 𝜑 → ⊥ ) ) → ( ⊥ → 𝜑 ) ) → ( 𝜑 → ( ⊥ → 𝜑 ) ) ) |
15 |
|
merco1 |
⊢ ( ( ( ( ( ( ⊥ → 𝜒 ) → ⊥ ) → ( 𝜑 → ⊥ ) ) → ( ⊥ → 𝜑 ) ) → ( 𝜑 → ( ⊥ → 𝜑 ) ) ) → ( ( ( 𝜑 → ( ⊥ → 𝜑 ) ) → ( ⊥ → 𝜒 ) ) → ( 𝜑 → ( ⊥ → 𝜒 ) ) ) ) |
16 |
14 15
|
ax-mp |
⊢ ( ( ( 𝜑 → ( ⊥ → 𝜑 ) ) → ( ⊥ → 𝜒 ) ) → ( 𝜑 → ( ⊥ → 𝜒 ) ) ) |
17 |
|
merco1 |
⊢ ( ( ( ( ( ⊥ → 𝜒 ) → ( ( 𝜑 → ( 𝜑 → ( ⊥ → 𝜑 ) ) ) → ⊥ ) ) → ( ( 𝜑 → ( ⊥ → 𝜑 ) ) → ⊥ ) ) → ( 𝜑 → ( ⊥ → 𝜒 ) ) ) → ( ( ( 𝜑 → ( ⊥ → 𝜒 ) ) → ⊥ ) → ( ( 𝜑 → ( 𝜑 → ( ⊥ → 𝜑 ) ) ) → ⊥ ) ) ) |
18 |
|
merco1 |
⊢ ( ( ( ( ( ( ⊥ → 𝜒 ) → ( ( 𝜑 → ( 𝜑 → ( ⊥ → 𝜑 ) ) ) → ⊥ ) ) → ( ( 𝜑 → ( ⊥ → 𝜑 ) ) → ⊥ ) ) → ( 𝜑 → ( ⊥ → 𝜒 ) ) ) → ( ( ( 𝜑 → ( ⊥ → 𝜒 ) ) → ⊥ ) → ( ( 𝜑 → ( 𝜑 → ( ⊥ → 𝜑 ) ) ) → ⊥ ) ) ) → ( ( ( ( ( 𝜑 → ( ⊥ → 𝜒 ) ) → ⊥ ) → ( ( 𝜑 → ( 𝜑 → ( ⊥ → 𝜑 ) ) ) → ⊥ ) ) → ( ⊥ → 𝜒 ) ) → ( ( 𝜑 → ( ⊥ → 𝜑 ) ) → ( ⊥ → 𝜒 ) ) ) ) |
19 |
17 18
|
ax-mp |
⊢ ( ( ( ( ( 𝜑 → ( ⊥ → 𝜒 ) ) → ⊥ ) → ( ( 𝜑 → ( 𝜑 → ( ⊥ → 𝜑 ) ) ) → ⊥ ) ) → ( ⊥ → 𝜒 ) ) → ( ( 𝜑 → ( ⊥ → 𝜑 ) ) → ( ⊥ → 𝜒 ) ) ) |
20 |
|
merco1 |
⊢ ( ( ( ( ( ( 𝜑 → ( ⊥ → 𝜒 ) ) → ⊥ ) → ( ( 𝜑 → ( 𝜑 → ( ⊥ → 𝜑 ) ) ) → ⊥ ) ) → ( ⊥ → 𝜒 ) ) → ( ( 𝜑 → ( ⊥ → 𝜑 ) ) → ( ⊥ → 𝜒 ) ) ) → ( ( ( ( 𝜑 → ( ⊥ → 𝜑 ) ) → ( ⊥ → 𝜒 ) ) → ( 𝜑 → ( ⊥ → 𝜒 ) ) ) → ( ( 𝜑 → ( 𝜑 → ( ⊥ → 𝜑 ) ) ) → ( 𝜑 → ( ⊥ → 𝜒 ) ) ) ) ) |
21 |
19 20
|
ax-mp |
⊢ ( ( ( ( 𝜑 → ( ⊥ → 𝜑 ) ) → ( ⊥ → 𝜒 ) ) → ( 𝜑 → ( ⊥ → 𝜒 ) ) ) → ( ( 𝜑 → ( 𝜑 → ( ⊥ → 𝜑 ) ) ) → ( 𝜑 → ( ⊥ → 𝜒 ) ) ) ) |
22 |
16 21
|
ax-mp |
⊢ ( ( 𝜑 → ( 𝜑 → ( ⊥ → 𝜑 ) ) ) → ( 𝜑 → ( ⊥ → 𝜒 ) ) ) |
23 |
11 22
|
ax-mp |
⊢ ( 𝜑 → ( ⊥ → 𝜒 ) ) |