Metamath Proof Explorer


Theorem merco1lem5

Description: Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 . (Contributed by Anthony Hart, 17-Sep-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion merco1lem5 ( ( ( ( 𝜑 → ⊥ ) → 𝜒 ) → 𝜏 ) → ( 𝜑𝜏 ) )

Proof

Step Hyp Ref Expression
1 merco1lem4 ( ( ( ( 𝜏𝜑 ) → ( 𝜑 → ⊥ ) ) → 𝜒 ) → ( ( 𝜑 → ⊥ ) → 𝜒 ) )
2 merco1 ( ( ( ( ( 𝜏𝜑 ) → ( 𝜑 → ⊥ ) ) → 𝜒 ) → ( ( 𝜑 → ⊥ ) → 𝜒 ) ) → ( ( ( ( 𝜑 → ⊥ ) → 𝜒 ) → 𝜏 ) → ( 𝜑𝜏 ) ) )
3 1 2 ax-mp ( ( ( ( 𝜑 → ⊥ ) → 𝜒 ) → 𝜏 ) → ( 𝜑𝜏 ) )