Metamath Proof Explorer


Theorem mercolem2

Description: Used to rederive the Tarski-Bernays-Wajsberg axioms from merco2 . (Contributed by Anthony Hart, 16-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion mercolem2 ( ( ( 𝜑𝜓 ) → 𝜑 ) → ( 𝜒 → ( 𝜃𝜑 ) ) )

Proof

Step Hyp Ref Expression
1 merco2 ( ( ( 𝜑𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜑 ) ) → ( ( 𝜑𝜑 ) → ( 𝜑 → ( 𝜑𝜑 ) ) ) )
2 merco2 ( ( ( 𝜑𝜑 ) → ( ( ⊥ → 𝜑 ) → ( 𝜑𝜓 ) ) ) → ( ( ( 𝜑𝜓 ) → 𝜑 ) → ( 𝜒 → ( 𝜃𝜑 ) ) ) )
3 merco2 ( ( ( 𝜑𝜓 ) → ( ( ⊥ → 𝜑 ) → ⊥ ) ) → ( ( ⊥ → 𝜑 ) → ( 𝜒 → ( 𝜃𝜑 ) ) ) )
4 merco2 ( ( ( ( 𝜑𝜓 ) → ( ( ⊥ → 𝜑 ) → ⊥ ) ) → ( ( ⊥ → 𝜑 ) → ( 𝜒 → ( 𝜃𝜑 ) ) ) ) → ( ( ( 𝜒 → ( 𝜃𝜑 ) ) → ( 𝜑𝜓 ) ) → ( ( ⊥ → 𝜑 ) → ( ( ⊥ → 𝜑 ) → ( 𝜑𝜓 ) ) ) ) )
5 3 4 ax-mp ( ( ( 𝜒 → ( 𝜃𝜑 ) ) → ( 𝜑𝜓 ) ) → ( ( ⊥ → 𝜑 ) → ( ( ⊥ → 𝜑 ) → ( 𝜑𝜓 ) ) ) )
6 merco2 ( ( ( ( 𝜒 → ( 𝜃𝜑 ) ) → ( 𝜑𝜓 ) ) → ( ( ⊥ → 𝜑 ) → ( ( ⊥ → 𝜑 ) → ( 𝜑𝜓 ) ) ) ) → ( ( ( ( ⊥ → 𝜑 ) → ( 𝜑𝜓 ) ) → ( 𝜒 → ( 𝜃𝜑 ) ) ) → ( ( ⊥ → 𝜑 ) → ( ( ( 𝜑𝜓 ) → 𝜑 ) → ( 𝜒 → ( 𝜃𝜑 ) ) ) ) ) )
7 5 6 ax-mp ( ( ( ( ⊥ → 𝜑 ) → ( 𝜑𝜓 ) ) → ( 𝜒 → ( 𝜃𝜑 ) ) ) → ( ( ⊥ → 𝜑 ) → ( ( ( 𝜑𝜓 ) → 𝜑 ) → ( 𝜒 → ( 𝜃𝜑 ) ) ) ) )
8 merco2 ( ( ( ( ( ⊥ → 𝜑 ) → ( 𝜑𝜓 ) ) → ( 𝜒 → ( 𝜃𝜑 ) ) ) → ( ( ⊥ → 𝜑 ) → ( ( ( 𝜑𝜓 ) → 𝜑 ) → ( 𝜒 → ( 𝜃𝜑 ) ) ) ) ) → ( ( ( ( ( 𝜑𝜓 ) → 𝜑 ) → ( 𝜒 → ( 𝜃𝜑 ) ) ) → ( ( ⊥ → 𝜑 ) → ( 𝜑𝜓 ) ) ) → ( ( ⊥ → 𝜑 ) → ( ( 𝜑𝜑 ) → ( ( ⊥ → 𝜑 ) → ( 𝜑𝜓 ) ) ) ) ) )
9 7 8 ax-mp ( ( ( ( ( 𝜑𝜓 ) → 𝜑 ) → ( 𝜒 → ( 𝜃𝜑 ) ) ) → ( ( ⊥ → 𝜑 ) → ( 𝜑𝜓 ) ) ) → ( ( ⊥ → 𝜑 ) → ( ( 𝜑𝜑 ) → ( ( ⊥ → 𝜑 ) → ( 𝜑𝜓 ) ) ) ) )
10 merco2 ( ( ( ( ( ( 𝜑𝜓 ) → 𝜑 ) → ( 𝜒 → ( 𝜃𝜑 ) ) ) → ( ( ⊥ → 𝜑 ) → ( 𝜑𝜓 ) ) ) → ( ( ⊥ → 𝜑 ) → ( ( 𝜑𝜑 ) → ( ( ⊥ → 𝜑 ) → ( 𝜑𝜓 ) ) ) ) ) → ( ( ( ( 𝜑𝜑 ) → ( ( ⊥ → 𝜑 ) → ( 𝜑𝜓 ) ) ) → ( ( ( 𝜑𝜓 ) → 𝜑 ) → ( 𝜒 → ( 𝜃𝜑 ) ) ) ) → ( ( ( ( 𝜑𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜑 ) ) → ( ( 𝜑𝜑 ) → ( 𝜑 → ( 𝜑𝜑 ) ) ) ) → ( ( ( ( 𝜑𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜑 ) ) → ( ( 𝜑𝜑 ) → ( 𝜑 → ( 𝜑𝜑 ) ) ) ) → ( ( ( 𝜑𝜓 ) → 𝜑 ) → ( 𝜒 → ( 𝜃𝜑 ) ) ) ) ) ) )
11 9 10 ax-mp ( ( ( ( 𝜑𝜑 ) → ( ( ⊥ → 𝜑 ) → ( 𝜑𝜓 ) ) ) → ( ( ( 𝜑𝜓 ) → 𝜑 ) → ( 𝜒 → ( 𝜃𝜑 ) ) ) ) → ( ( ( ( 𝜑𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜑 ) ) → ( ( 𝜑𝜑 ) → ( 𝜑 → ( 𝜑𝜑 ) ) ) ) → ( ( ( ( 𝜑𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜑 ) ) → ( ( 𝜑𝜑 ) → ( 𝜑 → ( 𝜑𝜑 ) ) ) ) → ( ( ( 𝜑𝜓 ) → 𝜑 ) → ( 𝜒 → ( 𝜃𝜑 ) ) ) ) ) )
12 2 11 ax-mp ( ( ( ( 𝜑𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜑 ) ) → ( ( 𝜑𝜑 ) → ( 𝜑 → ( 𝜑𝜑 ) ) ) ) → ( ( ( ( 𝜑𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜑 ) ) → ( ( 𝜑𝜑 ) → ( 𝜑 → ( 𝜑𝜑 ) ) ) ) → ( ( ( 𝜑𝜓 ) → 𝜑 ) → ( 𝜒 → ( 𝜃𝜑 ) ) ) ) )
13 1 12 ax-mp ( ( ( ( 𝜑𝜑 ) → ( ( ⊥ → 𝜑 ) → 𝜑 ) ) → ( ( 𝜑𝜑 ) → ( 𝜑 → ( 𝜑𝜑 ) ) ) ) → ( ( ( 𝜑𝜓 ) → 𝜑 ) → ( 𝜒 → ( 𝜃𝜑 ) ) ) )
14 1 13 ax-mp ( ( ( 𝜑𝜓 ) → 𝜑 ) → ( 𝜒 → ( 𝜃𝜑 ) ) )