Step |
Hyp |
Ref |
Expression |
1 |
|
meredith |
⊢ ( ( ( ( ( 𝜑 → 𝜑 ) → ( ¬ 𝜑 → ¬ 𝜑 ) ) → 𝜑 ) → 𝜑 ) → ( ( 𝜑 → 𝜑 ) → ( 𝜑 → 𝜑 ) ) ) |
2 |
|
meredith |
⊢ ( ( ( ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → ( ¬ 𝜑 → ¬ 𝜃 ) ) → 𝜑 ) → 𝜑 ) → ( ( 𝜑 → ( 𝜑 → 𝜓 ) ) → ( 𝜃 → ( 𝜑 → 𝜓 ) ) ) ) |
3 |
|
merlem9 |
⊢ ( ( ( ( ( ( ( 𝜑 → 𝜓 ) → 𝜑 ) → ( ¬ 𝜑 → ¬ 𝜃 ) ) → 𝜑 ) → 𝜑 ) → ( ( 𝜑 → ( 𝜑 → 𝜓 ) ) → ( 𝜃 → ( 𝜑 → 𝜓 ) ) ) ) → ( ( ( ( ( ( 𝜑 → 𝜑 ) → ( ¬ 𝜑 → ¬ 𝜑 ) ) → 𝜑 ) → 𝜑 ) → ( ( 𝜑 → 𝜑 ) → ( 𝜑 → 𝜑 ) ) ) → ( ( 𝜑 → ( 𝜑 → 𝜓 ) ) → ( 𝜃 → ( 𝜑 → 𝜓 ) ) ) ) ) |
4 |
2 3
|
ax-mp |
⊢ ( ( ( ( ( ( 𝜑 → 𝜑 ) → ( ¬ 𝜑 → ¬ 𝜑 ) ) → 𝜑 ) → 𝜑 ) → ( ( 𝜑 → 𝜑 ) → ( 𝜑 → 𝜑 ) ) ) → ( ( 𝜑 → ( 𝜑 → 𝜓 ) ) → ( 𝜃 → ( 𝜑 → 𝜓 ) ) ) ) |
5 |
1 4
|
ax-mp |
⊢ ( ( 𝜑 → ( 𝜑 → 𝜓 ) ) → ( 𝜃 → ( 𝜑 → 𝜓 ) ) ) |