Metamath Proof Explorer


Theorem metcn4

Description: Two ways to say a mapping from metric C to metric D is continuous. Theorem 10.3 of Munkres p. 128. (Contributed by NM, 13-Jun-2007) (Revised by Mario Carneiro, 4-May-2014)

Ref Expression
Hypotheses metcnp4.3 ⊒ 𝐽 = ( MetOpen β€˜ 𝐢 )
metcnp4.4 ⊒ 𝐾 = ( MetOpen β€˜ 𝐷 )
metcnp4.5 ⊒ ( πœ‘ β†’ 𝐢 ∈ ( ∞Met β€˜ 𝑋 ) )
metcnp4.6 ⊒ ( πœ‘ β†’ 𝐷 ∈ ( ∞Met β€˜ π‘Œ ) )
metcn4.7 ⊒ ( πœ‘ β†’ 𝐹 : 𝑋 ⟢ π‘Œ )
Assertion metcn4 ( πœ‘ β†’ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ βˆ€ 𝑓 ( 𝑓 : β„• ⟢ 𝑋 β†’ βˆ€ π‘₯ ( 𝑓 ( ⇝𝑑 β€˜ 𝐽 ) π‘₯ β†’ ( 𝐹 ∘ 𝑓 ) ( ⇝𝑑 β€˜ 𝐾 ) ( 𝐹 β€˜ π‘₯ ) ) ) ) )

Proof

Step Hyp Ref Expression
1 metcnp4.3 ⊒ 𝐽 = ( MetOpen β€˜ 𝐢 )
2 metcnp4.4 ⊒ 𝐾 = ( MetOpen β€˜ 𝐷 )
3 metcnp4.5 ⊒ ( πœ‘ β†’ 𝐢 ∈ ( ∞Met β€˜ 𝑋 ) )
4 metcnp4.6 ⊒ ( πœ‘ β†’ 𝐷 ∈ ( ∞Met β€˜ π‘Œ ) )
5 metcn4.7 ⊒ ( πœ‘ β†’ 𝐹 : 𝑋 ⟢ π‘Œ )
6 1 met1stc ⊒ ( 𝐢 ∈ ( ∞Met β€˜ 𝑋 ) β†’ 𝐽 ∈ 1stΟ‰ )
7 3 6 syl ⊒ ( πœ‘ β†’ 𝐽 ∈ 1stΟ‰ )
8 1 mopntopon ⊒ ( 𝐢 ∈ ( ∞Met β€˜ 𝑋 ) β†’ 𝐽 ∈ ( TopOn β€˜ 𝑋 ) )
9 3 8 syl ⊒ ( πœ‘ β†’ 𝐽 ∈ ( TopOn β€˜ 𝑋 ) )
10 2 mopntopon ⊒ ( 𝐷 ∈ ( ∞Met β€˜ π‘Œ ) β†’ 𝐾 ∈ ( TopOn β€˜ π‘Œ ) )
11 4 10 syl ⊒ ( πœ‘ β†’ 𝐾 ∈ ( TopOn β€˜ π‘Œ ) )
12 7 9 11 5 1stccn ⊒ ( πœ‘ β†’ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ βˆ€ 𝑓 ( 𝑓 : β„• ⟢ 𝑋 β†’ βˆ€ π‘₯ ( 𝑓 ( ⇝𝑑 β€˜ 𝐽 ) π‘₯ β†’ ( 𝐹 ∘ 𝑓 ) ( ⇝𝑑 β€˜ 𝐾 ) ( 𝐹 β€˜ π‘₯ ) ) ) ) )