Metamath Proof Explorer
		
		
		
		Description:  Two nonnegative integers less than the modulus are equal iff they are
     equal modulo the modulus.  (Contributed by AV, 14-Mar-2021)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | modlteq | ⊢  ( ( 𝐼  ∈  ( 0 ..^ 𝑁 )  ∧  𝐽  ∈  ( 0 ..^ 𝑁 ) )  →  ( ( 𝐼  mod  𝑁 )  =  ( 𝐽  mod  𝑁 )  ↔  𝐼  =  𝐽 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zmodidfzoimp | ⊢ ( 𝐼  ∈  ( 0 ..^ 𝑁 )  →  ( 𝐼  mod  𝑁 )  =  𝐼 ) | 
						
							| 2 |  | zmodidfzoimp | ⊢ ( 𝐽  ∈  ( 0 ..^ 𝑁 )  →  ( 𝐽  mod  𝑁 )  =  𝐽 ) | 
						
							| 3 | 1 2 | eqeqan12d | ⊢ ( ( 𝐼  ∈  ( 0 ..^ 𝑁 )  ∧  𝐽  ∈  ( 0 ..^ 𝑁 ) )  →  ( ( 𝐼  mod  𝑁 )  =  ( 𝐽  mod  𝑁 )  ↔  𝐼  =  𝐽 ) ) |